• Title/Summary/Keyword: moment rotation

Search Result 513, Processing Time 0.028 seconds

Minimum-weight seismic design of a moment-resisting frame accounting for incremental collapse

  • Lee, Han-Seon
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.35-52
    • /
    • 2002
  • It was shown in the previous study (Lee and Bertero 1993) that incremental collapse can lead to the exhaustion of the plastic rotation capacity at critical regions in a structure when subjected to the number of load cycles and load intensities as expected during maximum credible earthquakes and that this type of collapse can be predicted using the shakedown analysis technique. In this study, a minimum-weight design methodology, which takes into account not only the prevention of this incremental collapse but also the requirements of the serviceability limit states, is proposed by using the shakedown analysis technique and a nonlinear programming algorithm (gradient projection method).

Magnetic and Magneto-Optical Properties of Conjugated Polymers: A New Frontier

  • Gangopandhyay, Palash;Foerier, Stijn;Vangheluwe, M.;Koeckelberghs, Guy;Verbiest, Thiery;Persoons, Andr
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.23-24
    • /
    • 2006
  • Magnetic and magneto-optical properties of regioregular (>99%) poly(3-dodecylthiopenes are investigated. Faraday rotation of spin-coated films show extremely large Verdet constants, falling strongly with decreasing regioregularity. EPR spectroscopy at room temperature shows the presence of about 1 spin/190 monomers, indicative of delocalisation beyond a single polymer chain. SQUID measurements on the polymer give an effective magnetic moment of about 48900 mB, corrsponding to a S-value of 25.000. The Weiss-constant is 1.33 K indicating ferromagnetic coupling. Our experimental results show that organic polymer magnets can be prepared. Large MO effects allow the use of these materials in all-organic MO-sensors and devices.

  • PDF

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

Performance Analysis of Face Image Recognition System Using A R T Model and Multi-layer perceptron (ART와 다층 퍼셉트론을 이용한 얼굴인식 시스템의 성능분석)

  • 김영일;안민옥
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.69-77
    • /
    • 1993
  • Automatic image recognition system is essential for a better man-to machine interaction. Because of the noise and deformation due to the sensor operation, it is not simple to build an image recognition system even for the fixed images. In this paper neural network which has been reported to be adequate for pattern recognition task is applied to the fixed and variational(rotation, size, position variation for the fixed image)recognition with a hope that the problems of conventional pattern recognition techniques are overcome. At fixed image recognition system. ART model is trained with face images obtained by camera. When recognizing an matching score. In the test when wigilance level 0.6 - 0.8 the system has achievel 100% correct face recognition rate. In the variational image recognition system, 65 invariant moment features sets are taken from thirteen persons. 39 data are taken to train multi-layer perceptron and other 26 data used for testing. The result shows 92.5% recognition rate.

  • PDF

The Development of 150HP/ 70,000rpm Super High Speed Motor Driver for Direct Drive Method Turbo Compressor (직접 구동방식의 터보 압축기를 위한 150마력,70,000rpm 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최종경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • Turbo compressor needs high speed rotation of impeller in structure, high rated gearbox and conventional induction motor. This mechanical system increased the moment of inertia and mechanical friction loss. Resently, the study of turbo compressor applied super high speed motor and drive, removing gearbox made its sire small and mechanical friction loss minimum. This paper describes the implementation of the vector control schemes for a variable-speed 131㎾ PMSM(Permanent Magnet Synchronous Motor) drive in super-high speed application.

Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode Loading : Formulation (I)

  • Jang Insik;Sankar Bhavani V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.567-577
    • /
    • 2005
  • Several methods for improving the interlaminar strength and fracture toughness of composite materials are developed. Through-the-thickness stitching is considered one of the most common ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness and moderately improves the Mode II fracture toughness. An analytical model has been developed for simulating the behavior of stitched double cantilever beam specimen under various loading conditions. For z-directional load and moment about the y-axis the numerical solutions are compared with the exact solutions. The derived formulation shows good accuracy when the relative error of displacement and rotation between numerical and exact solution were calculated. Thus we can use the present model with confidence in analyzing other problems involving stitched beams.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

Effects of confinement reinforcement and concrete strength on nonlinear behaviour of RC buildings

  • Yon, Burak;Calayir, Yusuf
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.279-297
    • /
    • 2014
  • This paper investigates the effects of confinement reinforcement and concrete strength on nonlinear behaviour of reinforced concrete buildings (RC). For numerical application, an eleven-storey and four bays reinforced concrete frame building is selected. Nonlinear incremental static (pushover) analyses of the building are performed according to various concrete strengths and whether appropriate confinement reinforcement, which defined in Turkish seismic code, exists or not at structural elements. In nonlinear analysis, distributed plastic hinge model is used. As a result of analyses, capacity curves of the frame building and moment-rotation curves at lower end sections of ground floor columns are determined. These results are compared with each other according to concrete strength and whether appropriate confinement reinforcement exists or not, respectively. According to results, it is seen that confinement reinforcement is important factor for increasing of building capacity and decreasing of rotations at structural elements.

Non-Linear Behavior of Shear Deformable Simple Beam with a Concentrated Load (전단변형을 고려한 집중하중을 받는 단순보의 비선형 거동)

  • 이병구;이태은;안대순;김권식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.53-60
    • /
    • 2003
  • This paper explores the governing differential equations for the non-linear behavior of shear deformable simple beam with a concentrated load. In order to apply the Bernoulli-Euler beam theory to simple beam, the bending moment equation on any point of the elastica is obtained by concentrated load. The Runge-Kutta and Regula-Felsi methods, respectively, are used to integrate the governing differential equations and to compute the beam's rotation at the left end of the beams. The characteristic values of deflection curves for various load parameters are calculated and discussed

  • PDF