• Title/Summary/Keyword: moment rotation

Search Result 513, Processing Time 0.026 seconds

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation (크기와 회전 변화에 불변 모멘트 알고리즘을 이용한 자동 검사 시스템에 관한 연구)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}$ to $45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.

DYNAMIC CHARACTERISTICS OF A ROTATING TIMOSHENKO BEAM SUBJECTED TO A VARIABLE MAGNITUDE LOAD TRAVELLING AT VARYING SPEED

  • OMOLOFE, BABATOPE;OGUNYEBI, SEGUN NATHANIEL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.17-35
    • /
    • 2016
  • In this study, the dynamic behaviour of a rotating Timoshenko beam when under the actions of a variable magnitude load moving at non-uniform speed is carried out. The effect of cross-sectional dimension and damping on the flexural motions of the elastic beam was neglected. The coupled second order partial differential equations incorporating the effects of rotary and gyroscopic moment describing the motions of the beam was scrutinized in order to obtain the expression for the dynamic deflection and rotation of the vibrating system using an elegant technique called Galerkin's Method. Analyses of the solutions obtained were carried out and various results were displayed in plotted curve. It was found that the response amplitude of the simply supported beam increases with an increase in the value of the foundation reaction modulus. Effects of other vital structural parameters were also established.

Stability Analysis of a Biped Robot using FRI (FRI를 이용한 이족 보행 로봇의 안정도 해석)

  • 김상범;최상호;김종태;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.574-577
    • /
    • 2001
  • This paper presents the comparison of FRI(Foot Rotation Indicator) point and ZMP(Zero Moment Point) in biped robot stability. We showed FRI may be employed as a useful tool in stability analysis in biped robot. Also, we proposed the balancing joint trajectory derived from FRI point equation for stable gait. The numerical calculation routines and walking algorithms for simulation are performed by MATLAB. The procedure is composed of the leg trajectory planning, the generation of balancing trajectory, and the verification of dynamic stability.

  • PDF

Performance analysis of fieldbus systems using Petri net (페리네트를 이용한 필드버스 시스템의 성능 해석)

  • Park, Hong-Seong;Lee, Jae-Soo;Hong, Seong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.220-228
    • /
    • 1996
  • This paper presents a extended stochastic Petri net (ESPN) model for CTN(Circulated Token with No duration) service in the data link layer of IEC/ISA fieldbus. It is assumed that a station on the fieldbus has a specified minimum token holding time, a finite capacity buffer, and one transmitter queue with the highest priority. The mean transmission (or service) time at a station and the mean token rotation time for the symmetric fieldbus system atr derived using the presented SPN model and the moment generating function. These performance measures are represented in terms of the minimum token holding time, the number of stations, the arrival rate of messages, and the mean length of messages. The presented performance measure are validated by computer simulations.

  • PDF

Seismic Response of Haunch Repaired Steel MRFs: A Case Study (헌치로 보강된 철골모멘트 골조의 지진 응답: 사례연구)

  • 이철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.173-181
    • /
    • 1997
  • To investigate the effects of haunch repair on the system seismic performance of steel moment-resisting frames (steel MRFs), a case study was conducted for a 13-story frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 1.7% radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80%(for the Oxnard record) and 70%(for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

  • PDF

Development of the Nonlinear Structural Analysis Model for the Light-Weight Framed Structures (II) (경량형강 시설물의 비선형 구조해석 모델개발(II) -반강결 뼈대구조물의 해석에 대하여-)

  • 김한중;이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.78-87
    • /
    • 1998
  • In this study, semi-rigid light-weight framed structures analysis model (SERIFS) was developed by advancing the LEIFS model. This model enables us to analyze simultaneous effects of large deflection and semi-rigid connection by computing unbalanced load occurring in the process of repeated loading through equalization of bending moments and torsion. This model is also able to handle the effect of the semi-rigid connection and large deflection by modifying the elastic stiffness matrix using moment-rotation behavior of connection. Moment-rotation behavior of the semi-rigid connection was adopted from the experimental results of load-vertical displacement of frame element In conclusion, this model achieves to analyze the nonlinear and large deflection behavior on the semi-rigid and light-weight steel frame connection.

  • PDF

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

For the Association between 3D VAR Model and 2D Features

  • Kiuchi, Yasuhiko;Tanaka, Masaru;Fujiki, Jun;Mishima, Taketoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1404-1407
    • /
    • 2002
  • Although we look at objects as 2D images through our eyes, we can reconstruct the shape and/or depth of objects. In order to realize this ability using computers, it is required that the method which can estimate the 3D features of object from 2D images. As feature which represents 3D shapes effectively, three dimensional vector autoregressive model is pro- posed. If this feature is associated other feature of 2D shape, then above aim might be achieved. On the other hand, as feature which represents 2D shapes, quasi moment features is proposed. As the first step of association of these features, we constructed real time simulator that computes both of two features concurrently from object data (3D curves) . This simulator can also rotate object and estimate the rotation The method using 3D VAR model estimates the rotation correctly, but the estimation by quasi moment features includes much errors. This reason would be that projected images are constructed by the points only, and doesn't have enough sizes to estimate the correct 3D rotation parameters.

  • PDF

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.