• 제목/요약/키워드: moment resistance performance

검색결과 127건 처리시간 0.027초

Optimum design of reinforced concrete columns subjected to uniaxial flexural compression

  • Bordignon, R.;Kripka, M.
    • Computers and Concrete
    • /
    • 제9권5호
    • /
    • pp.327-340
    • /
    • 2012
  • The search for a design that meets both performance and safety, with minimal cost and lesser environmental impact was always the goal of structural engineers. In general, the design of conventional reinforced concrete structures is an iterative process based on rules of thumb established from the personal experience and intuition of the designer. However, such procedure makes the design process exhaustive and only occasionally leads to the best solution. In such context, this work presents the development and implementation of a mathematical formulation for obtaining optimal sections of reinforced concrete columns subjected to uniaxial flexural compression, based on the verification of strength proposed by the Brazilian standard NBR 6118 (ABNT 2007). To minimize the cost of the reinforced concrete columns, the Simulated Annealing optimization method was used, in which the amount and diameters of the reinforcement bars and the dimensions of the columns cross sections were considered as discrete variables. The results obtained were compared to those obtained from the conventional design procedure and other optimization methods, in an attempt to verify the influence of resistance class, variations in the magnitudes of bending moment and axial force, and material costs on the optimal design of reinforced concrete columns subjected to uniaxial flexural compression.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Performance of partial strength connection connected by thick plate between column flanges

  • Tahir, Mahmood M.;Juki, Irwan;Ishak, Mohd Y.;Mohammad, Shahrin;Awang, Abdullah Z.;Plank, Roger
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.215-228
    • /
    • 2014
  • Traditional beam connections to the minor axis of a column have relatively low strength and stiffness. A modified detail, using a plate welded between the toes of the column flange - referred to as a toe plate connection - is examined in this paper. The results of an experimental investigation for both flush and extended end-plate connections connected to a 25 mm thick end-plate are presented. The tests are complemented by finite element modelling which compares very well with the test observations. The results show a significant increase in both moment resistance and initial stiffness for this connection detail compared with connections made directly to the column web. This offers the prospect of more optimal solutions taking advantage of partial strength frame design for the minor axis as well as major axis.

분사형 초공동 수중운동체의 Planing 회피에 대한 연구 (Studies on Planing Avoidance Control for a Ventilated Supercavitating Vehicle)

  • 박종열;김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.201-209
    • /
    • 2016
  • Supercavitation is a technology that reduces frictional resistance of an underwater vehicle by surrounding it with bubbles. Supercavity is divided into natural supercavity and ventilated supercavity which is formed by artificially supplying gas. Planing forces are present when a section of the underwater vehicle goes outside of the cavitation region in the supercavity condition. Planing often leads to an unstable flight because it acts vertically on the body suddenly. In this paper, a relationship between the ventilation rate and the cavitation number is determined. Based on the relationship, desired cavitation number which can avoid to planing is determined and then ventilation controller is designed. The performance of the ventilation controller is verified with a depth change controller using the cavitator. Simulation results show that the ventilation controller can minimize the planing force and moment.

Numerical and experimental behavior of moment concrete frame retrofitted with TADAS metal yielding damper under lateral loading

  • Reza Nazeran;Ali Hemmati;Hasan Haji Kazemi
    • Structural Engineering and Mechanics
    • /
    • 제89권5호
    • /
    • pp.507-524
    • /
    • 2024
  • Since the cost of reconstruction is very high and the structure may have been damaged by an earthquake, we must retrofit the structure. Therefore, the importance of studying this issue is very high in order to achieve the desired resistance against the regulations. The present study involved the numerical and experimental analysis of nine concrete frames, consisting of three concrete frames, three concrete frames with bracing, and three concrete frames with a TADAS damper. The purpose of this study is to strengthen the damaged concrete frame using braces and TADAS dampers. Observations were made of the frames as they were subjected to controlled displacement. Also, ABAQUS software was used to compare numerical and experimental results. According to the results, the software was sufficiently capable of modeling the studied frames. Additionally, a parametric study was conducted on the thickness and number of bending plates. Thickness increases from 8 mm to 12 mm, 8 mm to 15 mm, and 8 mm to 20 mm, increasing the base shear by about 6.7%, 11.1%, and 25%, respectively. Furthermore, increasing the number of plates from 4 to 5, 4 to 6, and 4 to 7 increased base shears by about 4.5%, 8.4%, and 14%, respectively.

스테인리스 물탱크 내진설계를 위한 효율적 패널 형상 (Efficient Panel Shapes for Seismic Resistance of Stainless Steel Water Tank)

  • 김성욱;김태은;오성룡;박지훈
    • 도시과학
    • /
    • 제12권2호
    • /
    • pp.19-30
    • /
    • 2023
  • The seismic design of water tanks for fire protection is important to prevent secondary earthquake damages due to fires. In this study, the seismic performance of stainless steel water tanks was evaluated considering both static and dynamic water pressure effects, and the influence of different panel shapes was investigated through numerical analysis. First, a basic water tank model comprised of flat panels was built, and then water pressure distribution including sloshing effects was evaluated. In the result of structural analysis, many panels of the basic water tank exceeded a specified allowable stress for load combinations including earthquake loads. In order to reduce the bending stress of the panel by increasing the moment of inertial of the panel section, alternative shapes of a truncated quadrangular pyramid were developed. Five water tanks with different alternative panel shapes were built and analyzed for the same load combinations. Based on the results of the numerical analysis, a number of effective aspect ratios were selected and modified to increase economic feasibility through additional analysis and structural safety check.

합성섬유보강 콘크리트 보의 균열 후 거동 예측 (Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams)

  • 오병환;김지철;박대균;원종필
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.900-909
    • /
    • 2002
  • 섬유는 콘크리트의 취약점인 인장 및 균열저항성을 증가시켜 그 효용성을 크게 한다. 그러나, 섬유의 균열저항성을 합리적으로 예측하기 위해서는 균열후의 거동예측기법이 정립되어야 한다. 따라서, 본 연구의 목적은 최근 들어 개발되고 있는 구조용 합성섬유 보강콘크리트의 균열후 거동(Post-Cracking Behavior)을 예측하기 위한 해석기법을 제시하는데 있다. 이를 위하여 합성섬유 보강 콘크리트 보의 균열단면해석에 있어서, 우선적으로 균열단면을 강체운동으로 가정하고, 균열폭(crack width) 및 균열면에 대해 기울기 90$^{\circ}$ 인 단일섬유의 인발실험(pullout test)에 의한 인발 하중(pullout load)과 변위(slip)의 관계를 이용하여 개개 섬유의 균열이후 거동을 묘사하였다. 또한 실제 섬유의 매립방향과 매립길이의 다양성을 확률적으로 고려하여 균열면에서의 유효섬유개수를 산정한 뒤에 FRC 보의 휨거동해석을 수행하였고, FRC 보 실험을 시행한 결과와 비교한 결과 잘 일치하는 것으로 나타났다. 본 해석결과로부터 하중-처짐 곡선, 모멘트-곡률 곡선 등을 도출할 수 있으며, 본 연구의 모델은 일정수준의 균열 저항성 또는 인성지수(toughness performance)를 얻기 위한 섬유의 기하형상을 개발하는데 유용한 방법으로 사용될 수 있다. 또한 평균응답, 파괴모드의 운동학으로 표현된 이 모델은 FRC 보 실험 결과들을 유사하게 예측할 수 있기 때문에 앞으로 섬유보강콘크리트 부재의 합리적인 설계 및 해석에 효율적으로 활용될 수 있을 것으로 사료된다.

MRS 연속단 접합부의 구조상세에 따른 하중저항 메커니즘과 거동 특성 (Load Resistance Mechanism and Behavior Characteristics of MRS Continuous Joints)

  • 오영훈;문정호;임주혁;최동섭;이강철
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.247-254
    • /
    • 2010
  • 이 연구는 댑단부 설계방법, 덧침 콘크리트 접합면의 상태, 댑단부의 형상 등의 구조상세가 MRS 연속단 접합부의 하중저항 메커니즘과 거동 특성에 미치는 영향을 평가하였다. 댑단부의 전단설계를 위한 계수하중으로서 고정하중과 활하중을 고려한 실험체와 고정하중만을 대상으로 설계한 실험체는 모두 접합부의 연성적인 휨파괴를 보여주었다. 따라서 MRS 연속단 접합부의 댑단부는 시공단계에 따라 변화하는 응력상태에 맞게 댑단부의 전단설계를 한다면 실제 사용상태의 하중은 연속단의 휨저항 메커니즘에 의해 저항할 수 있다고 판단된다. 또한 접합면의 거칠기는 MRS 연속단 접합부의 휨강도에 큰 영향을 미치지 않는 것으로 나타났지만 MRS 단부에 전단키를 설치한 구조상세는 변형능력을 향상시키는 결과를 보여주었다.

내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구 (Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column)

  • 염응준;김현종;한택희;강영종
    • 한국방재학회 논문집
    • /
    • 제8권1호
    • /
    • pp.15-21
    • /
    • 2008
  • 내부 구속 중공 CFT(ICH-CFT) 기둥은 콘크리트의 양쪽(중공부와 외부)에 두 개의 강관이 삽입된 형태이다. 외부 강관과 내부 장관은 강관과 중공 부분으로 인하여 좋은 내진 성능과 연성을 발휘하며, 또한 에너지 흡수도 하는 기능을 가지고 있다. 그러므로 본 교각 형태의 실용성을 위한 연구가 필요하다고 할 수 있다. 본 논문에서는 ICH-CFT 기둥의 실용적인 설계를 목적으로, 내진성능에 대한 매개변수 연구를 실시하였다. 매개변수는 교각의 지름과 중공비 그리고 같은 모멘트 성능을 발휘하는 장관의 두께이다. 또한 경제성에 따른 연성도 평가와 CFT기둥과의 비교를 통하여 좀 더 실용적인 평가를 하고자 하였다. 특히, 중공비와 외부강관 두께에 따라 내진성능이 차이를 보였으며, ICH-CFT 교각의 외부강관의 두께에 따른 경제적인 중공비를 제시하였다.

이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가 (Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar)

  • 황훈희
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.