• Title/Summary/Keyword: moment fields

Search Result 137, Processing Time 0.025 seconds

A functional central limit theorem for positively dependent random fields

  • Tae Sung Kim;Eun Yang Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.265-272
    • /
    • 1996
  • In this note we prove a functional central limit theorem for linearly positive quadrant dependent(LPQD) random fields, satisfying some assumption on covariances and the moment condition $\sup_{n \in \Zeta^d} E$\mid$S_n$\mid$^{2+\rho} < \infty$ for some $\rho > 0$. We also apply this notion to random measures.

  • PDF

RUDNICK AND SOUNDARARAJAN'S THEOREM FOR FUNCTION FIELDS IN EVEN CHARACTERISTIC

  • Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • In this paper we prove an even characteristic analogue of the result of Andrade on lower bounds for moment of quadratic Dirichlet L-functions in odd characteristic. We establish lower bounds for the moments of Dirichlet L-functions of characters defined by Hasse symbols in even characteristic.

Design procedure for prestressed concrete beams

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.235-253
    • /
    • 2014
  • The theoretical basis and the main results of a design procedure, which attempts to provide the optimal layout of ordinary reinforcement in prestressed concrete beams, subjected to bending moment and shear force are presented. The difficulties encountered in simulating the actual behaviour of prestressed concrete beam in presence of coupled forces bending moment - shear force are discussed; particular emphasis is put on plastic models and stress fields approaches. A unified model for reinforced and prestressed concrete beams under axial force - bending moment - shear force interaction is provided. This analytical model is validated against both experimental results collected in literature and nonlinear numerical analyses. Finally, for illustrating the applicability of the proposed procedure, an example of design for a full-scale prestressed concrete beam is shown.

Technology of Control Moment Gyroscope and its Industrial Trend (제어 모멘트 자이로의 기술과 산업동향)

  • Lee, Seon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • The well-used actuators for the attitude control of spacecrafts are thruster, reaction wheel, control moment gyroscope, and magnetic torquer. Among them, the control moment gyroscope(CMG) which generates the torque based on the gyroscopic principle in physics, has an advantage of the high torque output compared to the low power consumption. This paper introduces an outline of CMG hardware technology, its application history in spacecrafts, and their associated hardware characteristics. Moreover, its spin-off cases to the other industrial fields such as ship, robotics, and MEMS including their research trend are provided.

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.599-614
    • /
    • 2021
  • This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Conditional Moment-based Classification of Patterns Using Spatial Information Based on Gibbs Random Fields (깁스확률장의 공간정보를 갖는 조건부 모멘트에 의한 패턴분류)

  • Kim, Ju-Sung;Yoon, Myoung-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1636-1645
    • /
    • 1996
  • In this paper we proposed a new scheme for conditional two dimensional (2-D)moment-based classification of patterns on the basis of Gibbs random fields which are will suited for representing spatial continuity that is the characteristic of the most images. This implementation contains two parts: feature extraction and pattern classification. First of all, we extract feature vector which consists of conditional 2-D moments on the basis of estimated Gibbs parameter. Note that the extracted feature vectors are invariant under translation, rotation, size of patterns the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on 486 66Mhz PC. Experiments reveal that the proposed scheme has high classification rate over 94%.

  • PDF

The Kinematic Analysis of the Rybalko Motion on the Horizontal Bar (철봉 리발코(Rybalko) 동작의 운동학적 분석)

  • Lee, Byoung-Won
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.109-117
    • /
    • 2006
  • The purpose of this study was done in order to investigate the Kinematical variables of the Rybalko motion on the Horizontal bar using the 3-dimensional cinematographic method. For this study, three excellent athletes take part in a 2003 Daegue universid game were chosen. The subject,s Rybalko motion was filmed with S-VHS camera at the speed of 60 fields per second and digitized the each fields. And the Kwon3D 3.1 version program was employed to obtain 3-dimensional data. As a result of this study. 1. A total time spent for performing Rybalko skill was Mean $2.52{\pm}0.13sec$. From starting down swing to releasing right hand the Mean $0.84{\pm}0.24sec$ was taken. 2. In the event 3 of Rybalko motion, that is, the moment which the right-hand is released on the bar, the center of mass must is employed at the position above the horizontal line of bar. In this research, the average vertical displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 3. In the event 5, that is, the moment which the right-hand is catched again on the bar, the center of mass is employed at the position before the vertical line of bar. In this research, the average horizontal displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 4. It has been seen that, at the moment of release of right-hand, lateral variation of center of mass is 13.395cm, vertical variation of center of mass is 7.41cm Thus, it is concluded that lateral variation of center of mass should be reduced for high grade to be acquired. 5. It has been founded that high speed of down swing influences speed of up swing, and that, in the motion of twist, the horizontal speed is little changed.

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

Aspects on Nonuniqueness and Instability Inherent in Inverse Scattering Problems

  • Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • The nonuniqueness of a mathematically rigorous solution to 2-dimensional inverse scattering problems is explained in a limiting view of the numerical calculations based on the spectral-domain moment method. It is illustrated that its theoretical uniqueness cannot be assured even by performing additional measurements of the scattered fields not only along multiple lines but also with angular/frequency-diversities. In a real situation, however, computational error and measurement noise are inevitable. Those limitations render it meaningless to controvert the existence of a theoretically rigorous solution. Hence the most practical issue is how to remedy the instability of its practically approximate solution.

Modeling of Partially Premixed Turbulent Combustion by Zone-Conditioned Conditional Moment Closure (Zone-conditioned CMC 모델을 이용한 부분예혼합 난류연소 모델링)

  • Lee, Eun-Ju;Kim, Seung H.;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.41-45
    • /
    • 2002
  • The zone-conditioned CMC equations are derived by taking an unconditional average of the generic conservation equations multiplied by delta and Heaviside functions in terms of mixture fraction and reaction progress variable. The resulting equations are essentially in the same form as the single zone CMC equations except for separate flow fields for burned and unburned gas. The zone-conditioned two-fluid equations are applied to a stagnating turbulent premixed flame brush of Cheng and Shepherd[5l. It is shown that the flame stretch factor is of crucial importance to accurately reproduce the measured mean reaction progress variable and conditional velocities. Further work is in progress for the relationship between surface and volume averages and extension to partially premixed combustion on the basis of a triple flame structure, e. g. in a lifted turbulent diffusion flame.

  • PDF