• Title/Summary/Keyword: moment curvature

Search Result 319, Processing Time 0.023 seconds

Fundamental behavior of CFT beam-columns under fire loading

  • Varma, Amit H.;Hong, Sangdo;Choe, Lisa
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.679-703
    • /
    • 2013
  • This paper presents experimental investigations of the fundamental behavior of concrete filled steel tube (CFT) beam-columns under fire loading. A total of thirteen specimens were tested to determine the axial force-moment-curvature-temperature behavior of CFT beam-columns. The experimental approach involved the use of: (a) innovative heating and control equipment to apply thermal loading and (b) digital image correlation with close-range photogrammetry to measure the deformations (e.g., curvature) of the heated region. Each specimen was sequentially subjected to: (i) constant axial loading; (ii) thermal loading in the expected plastic hinge region following the ASTM E119 temperature-time T-t curve; and (iii) monotonically increasing flexural loading. The effects of various parameters on the strength and stiffness of CFT beam-columns were evaluated. The parameters considered were the steel tube width, width-tothickness ratio, concrete strength, maximum surface temperature of the steel tube, and the axial load level on the composite CFT section. The experimental results provide knowledge of the fundamental behavior of composite CFT beam-columns, and can be used to calibrate analytical models or macro finite element models developed for predicting behavior of CFT members and frames under fire loading.

Flow Characteristics for the Variation of Radius of Curvature in Open Channel Bends (만곡수로에서의 곡률반경 변화에 따른 흐름특성)

  • 윤세의;이종태
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.435-444
    • /
    • 1990
  • The flow characteristics varying with the rate of the radius of curvature to width (Rc/B) in open channel bends are investigated with a simplified numerical model, briefly. Secondary flow velocity and transverse bed slope are formulated from the equations of moment of momentum and force balance analysis, respectively. The conservation equations of mass and streamwise momentum are simplified by depth integration and its solution could be obtained form explicit finite difference method. Three sets of computer simulation are executed. The rates of Rc/B adopted in simulations are 2.7, 5.4, 8.1 , respectively. The terms analyzed in this paper are secondary flow velocity, streamwise velocity, the path of maximum streamwise velocity, deviation angle, and mass-shift velocity.

  • PDF

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

Ductility Evaluation of Circular Hollow Reinforced Concrete Columns with Internal Steel Tube (강관 보강 중공 R.C 기둥의 연성 평가 해석)

  • Han, Seung Ryong;Lim, Nam Hyoung;Kang, Young Jong;Lee, Gyu Sei
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In locations where the cost of concrete is relatively high or in situations where the weight of concrete members has to be kept to a minimum, it may be more economical to use hollow reinforced concrete vertic al members. Hollow reinforced concrete colun-ms with a low axial load, a moderate longitudinal steel percentage and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. Hollow reinforced concrete columns with a high axial load, a high longitudinal steel percentage, and a thin wall were found, however, to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner through the disintegration of the concrete in the compression zone. A design recommendation and example through the moment-curvature analysis program for curvature ductility are herein presented. A theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted, providing that the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed foi members with circular sections.

Image Information Retrieval Using DTW(Dynamic Time Warping) (DTW(Dynamic Time Warping)를 이용한 영상 정보 검색)

  • Ha, Jeong-Yo;Lee, Na-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.423-431
    • /
    • 2009
  • There are various image retrieval methods using shape, color and texture features. One of the most active area is using shape and color information. A number of shape representations have been suggested to recognize shapes even under affine transformation. There are many kinds of method for shape recognition, the well-known method is Fourier descriptors and moment invariant. The other method is CSS(Curvature Scale Space). The maxima of curvature scale space image have already been used to represent 2-D shapes in different applications. Because preexistence CSS exists several problems, in this paper we use improved CSS method for retrieval image. There are two kinds of method, One is using RGB color information feature and the other is using HSI color information feature. In this paper we used HSI color model to represent color histogram before, then use it as comparison measure. The similarity is measured by using Euclidean distance and for reduce search time and accuracy, We use DTW for measure similarity. Compare with the result of using Euclidean distance, we can find efficiency elevated.

  • PDF

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Bond and Flexural Behavior of RC Beams Strengthened Using Ductile PET (고연성 PET 섬유로 보강된 철근콘크리트 보의 부착 및 휨 거동)

  • Park, Hye-Sun;Kim, So-Young;Lim, Myung-Kwan;Choi, Donguk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.30-39
    • /
    • 2016
  • An experimental study was performed to investigate flexural performance and bond characteristics of RC beams strengthened using ductile polyethylene terephthalate(PET) with low elastic modulus. Bond tests were planned and completed following CSA S806. Test variables were fiber type and fiber amount. Also, total of 8 RC beams was tested. Major test variables of the beam tests included section ductility(${\mu}=3.4$, 7.0), fiber type(CF, GF, PET) and amount of fiber strengthening. Moment-curvature analyses of the beam sections were also performed. In bond tests, the bond stress distribution as well as the maximum bond stress increased with increasing amount of PET. In case of 10 layers of PET, the effective bond length was 60 mm with the maximum and the average bond stress of 2.33 and 2.10 MPa, respectively. RC beam test results revealed that the moment capacity of the RC beams strengthened using PET 10 and 20 layers increased over the control beam with little reduction in ductility by fiber strengthening. All beams strengthened using PET resulted in ductile flexural failure without any sign of fiber debonding or fiber rupture. It was important to include the mechanical properties of adhesive in the moment-curvature analysis of PET-strengthened beam sections.

Culm Characteristics of Rice Plant Related to Lodging Resistance under Different Nitrogen Levels in Direct Seeding on Flooded Paddy Surface (벼 담수표면직파재배 질소시비 기준에 따른 줄기 특성과 도복과의 관계)

  • 송동석;김진호;이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.308-317
    • /
    • 1996
  • These experiments were conducted to investigate variation of physical characteristics of the culm related to lodging resistance by nitrogen levels under direct seeding on flooded paddy surface. The number of seedling per m$^2$ were from 103 to 110 plants, and seedling ratios were ranged from 66.7% to 71.2%. The lodging occurrence were increased in order to the nitrogen levels 15 kg, 10 kg, 5 kg /10a, and the lodging resistant varieties ; Dongjinbyeo and Cheongmyungbyeo showed less values of field lodging than those of lodging susceptible varieties ; Daecheongbyeo, Palgongbyeo and H waseongbyeo. The lodging resistance was decreased in semidwarf varieties compare with long culm varieties, but Dongjinbyeo, long culm variety has lodging resistance. The occurrence of lodging decreased with lower values in top moment, but with higher values in the breaking moment with leaf sheath. The root dry weight positively correlated with weight of culm base, but modulus of section was negatively correlated with bending curvature, respectively.

  • PDF

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios

  • Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ghanbari, Farhad
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.833-848
    • /
    • 2013
  • Nine rectangular-section of High Strength Concrete(HSC) beams were designed and casted based on the American Concrete Institute (ACI) code provisons with varying of tensile reinforcement ratio as (${\rho}_{min}$, $0.2_{{\rho}b}$, $0.3_{{\rho}b}$, $0.4_{{\rho}b}$, $0.5_{{\rho}b}$, $0.75_{{\rho}b}$, $0.85_{{\rho}b}$, $_{{\rho}b}$, $1.2_{{\rho}b}$). Steel and concrete strains and deflections were measured at different points of the beam's length for every incremental load up to failure. The ductility ratios were calculated and the moment-curvature and load-deflection curves were drawn. The results showed that the ductility ratio reduced to less than 2 when the tensile reinforcement ratio increased to $0.5_{{\rho}b}$. Comparison of the theoretical ductility coefficient from CSA94, NZS95 and ACI with the experimental ones shows that the three mentioned codes exhibit conservative values for low reinforced HSC beams. For over-reinforced HSC beams, only the CSA94 provision is more valid. ACI bending provision is 10 percent conservative for assessing of ultimate bending moment in low-reinforced HSC section while its results are valid for over-reinforced HSC sections. The ACI code provision is non-conservative for the modulus of rupture and needs to be reviewed.