• 제목/요약/키워드: moment connection

검색결과 555건 처리시간 0.022초

천장 브래킷형 모듈러 시스템의 접합부 내진 성능과 설계 프로세스 (Seismic Performance and Design Process of a Ceiling Bracket-Typed Modular Connection)

  • 이승재;강창훈;박재성;곽의신;손수덕
    • 한국공간구조학회논문집
    • /
    • 제20권3호
    • /
    • pp.27-34
    • /
    • 2020
  • This paper examines the seismic performance and structural design of the ceiling bracket-type modular connection. The bracket-type system reduces the cross-sectional area loss of members and combines units using fitting steel plate, and it has been developed to be fit for medium-story and higher-story buildings. In particular, this study conducted the cyclic loading test for the performance of the C-type and L-type brackets, and compared the results. The test results were also compared with the commercial FEA program. In addition, the structural design process for the bracket-type modular connection was presented. The two connections, proposed as a result of the test results, were all found to secure the seismic performance level of the special moment steel frame. In the case of initial stiffness, the L-type bracket connection was found to be great, but in the case of the maximum moment or fully plastic moment, it was different depending on the loading direction.

Experimentally investigation of replaceable reduced beam section utilizing beam splice connection

  • Yasin Onuralp Ozkilic;Mehmet Bakir Bozkurt
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.109-119
    • /
    • 2024
  • This study presents a replaceable reduced beam section (R-RBS) located at the column end in moment resisting frames (MRFs). An end of the R-RBS is connected to column by using end-plate moment connection and the other end of that is connected to main beam with beam splice connection. Therefore, the RBS that is expected to yield under an earthquake can be easily replaceable. Geometry of the RBS and the thickness of the beam splice connection are the prime variables of this study. A total of eight experimental test was carried out to examine the seismic performance of the proposed R-RBS with the connection details. The results obtained from experimental studies demonstrated that plate sizes of the beam splice connection significantly affect the seismic performance of RBSs used in MRFs.

깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발 (Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame)

  • 정시화;알미아이유 로벨 원디므;박만우;주영규
    • 대한건축학회논문집:구조계
    • /
    • 제35권4호
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

상·하부 스플릿 T 접합부의 초기회전강성 예측모델 (Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection)

  • 양재근;김윤;박재호
    • 한국강구조학회 논문집
    • /
    • 제24권3호
    • /
    • pp.279-287
    • /
    • 2012
  • 상 하부 스플릿 T 접합부는 T-stub의 두께, 고력볼트 게이지 거리 등의 주요 변수 조합에 따라서 보통모멘트골조 혹은 특수모멘트골조에 적합한 접합부로 사용된다. 상 하부 스플릿 T 접합부가 안전한 구조거동을 발휘하기 위해서는 건축구조기준에서 규정한 층간변위각 및 접합부모멘트에 대한 요구사항을 만족하여야 한다. 이러한 요구사항 조건의 충족여부를 파악하기 위해서는 접합부의 회전강성 및 한계소성모멘트에 대한 예측이 필수적이다. 따라서 이 연구는 일차적으로 정적하중을 받는 상 하부 스플릿 T 접합부의 회전강성 예측을 위한 해석모델 제안을 위하여 진행하고자 한다. 이를 위하여 3차원 비선형 유한요소해석을 수행하였다. 제안한 해석모델의 적용 적합성은 기존의 해석모델 및 실험결과와 비교 검토하여 입증하였다.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

국내 저층 철골 모멘트골조의 내진설계 (Seismic Design of Low-rise Steel Moment Frames in Korea)

  • 김태완
    • 한국지진공학회논문집
    • /
    • 제15권1호
    • /
    • pp.11-18
    • /
    • 2011
  • 현재 국내 철골 모멘트골조 접합부는 대부분 공장제작으로 품질관리가 잘 이루어져 연성능력이 상당한 수준이다. 문헌에 의하면 국내 접합부는 미국 철강협회에서 철골 중간모멘트골조에 대해 제시한 성능 기준을 충분히 만족하고 있다. 그런데 이전 설계기준인 KBC2005에서는 철골모멘트골조에 연성모멘트골조 하나만을 제공하였으나 현 KBC2009 기준은 보통, 중간, 특수모멘트골조로 다양하게 제공하고 있다. 여기서 국내 접합부 형식을 그대로 사용했을 때 어떤 시스템이 적합한지 조사할 필요성이 있다. 따라서 본 연구에서는 KBC2005의 연성모멘트골조와 KBC2009의 중간모멘트골조의 거동을 비교하여 국내에 적합한 설계 방법을 찾고자 하였다. 연구 결과 기존 연성모멘트골조의 설계 계수를 따르더라도 성능목표를 충분히 만족하는 것으로 나타났다.

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.