• Title/Summary/Keyword: molecular shape

Search Result 415, Processing Time 0.027 seconds

Skeletal Development - Wnts Are in Control

  • Hartmann, Christine
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2007
  • Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.

Analysis of Bone-Remodeling Process Using Quasi-molecular Dynamics (요추 추체의 골 -재형성에 대한 준분자 동력학적 접근 방법)

  • 김영은;최훈희
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.447-451
    • /
    • 2003
  • A new method for analyzing the bone-remodeling process using quasi-molecular dynamics was proposed in this study. The effect of pressure due to bone marrow, which could not be considered in previous methods, was also considered in this method. Bone-remodeling response of the 2D vertebral body of lumbar spine to a uniaxial compressive displacement of 1.8564mm. corresponding to approximately 2kN of compressive load, was studied. Converged shape change of the cortical shell and rearrangement of cancellous bone structure matched well with a normal shape of the vertebral body. The calculated responses in the spinal elements also shows closed results compared with experimental results.

Classification and Expression Profiling of Putative R2R3 MYB Genes in Rice

  • Kim, Bong-Gyu;Ko, Jae-Hyung;Min, Shin-Young;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • MYB genes, comprising group of related genes found in animal, plant, and fungal genomes, encode common DNA-binding domains composed of one to four repeat motifs. MYB genes containing two repeats (R2R3) constitute largest MYB gene family in plants. R2R3 MYB genes play important roles in regulation of secondary metabolism, control of cell shape, disease resistance, and hormone response. Eight-four R2R3 MYB genes were retrieved from rice genome for functional characterization of MYB genes. Analysis of MYB domains revealed each MYB domain contains three ${\alpha}$-helices with regularly spaced tryptophan residues. R2R3 MYB genes were divided into four subfamilies based on phylogenic analysis result. Real-time PCR analysis of 34 MYB genes revealed 12 MYB genes were highly expressed in seeds than in leaves, whereas 4 genes were highly expressed in leaves.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

Synthesis and characterization of Star Shape Polycaprolactone containing 4-Arm Polycaprolactone Core (4개의 폴리카프로락톤 가지 코어를 가지는 스타형 폴리카프로락톤의 합성 및 분석)

  • An, Sung-Guk;Cho, Chang-Gi
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.199-202
    • /
    • 2002
  • The synthesis of materials with controlled composition and architectures continues to be a focus of considerable current research. Dendritic multiarm polymers such as dendrimer, hyperbranched polymer, and star polymers are three dimensional macromolecules, in which a large number of linear arms of similar molecular weight and narrow molecular weight distribution emanate from a central core. (omitted)

  • PDF

Importance of Molecular Geometry in Liquid Crystal Formation-Incapability of Mesophase-Formation by Bent Dimesogenic and Star-Shaped Trimesogenic Compounds

  • Jung-Il Jin;Chung-Seock Kang;Bong Young Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.245-248
    • /
    • 1990
  • A series of compounds were synthesized that contain varying number of mesogenic units, 4-n-butylazobenzene moiety, attached to the central benzene ring through ester bond. These compounds were subjected to thermal analysis on a differential scanning calorimeter (DSC) and also on a polarizing microscope. It was found from this study that the presence of mesogenic units in a multi-mesogenic compound does not guarantee for the compound to become mesomorphic and that the linear molecular shape is conducive to form a liquid crystalline phase.

Kinetic Energy Release in the Fragmentation of tert-Butylbenzene Molecular Ions. A Mass-analyzed Ion Kinetic Energy Spectrometric (MIKES) Study

  • Choe, Joong-Chul;Kim, Byung-Joo;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.167-171
    • /
    • 1989
  • Kinetic energy release in the fragmentation of tert-butylbenzene molecular ion was investigated using mass-analyzed ion kinetic energy spectrometry. Method to estimate kinetic energy release distribution (KERD) from experimental peak shape has been explained. Experimental KERD was in good agreement with the calculated result using phase space theory. Effect of dynamical constraint was found to be important.

Laminopathies; Mutations on single gene and various human genetic diseases

  • Kang, So-mi;Yoon, Min-Ho;Park, Bum-Joon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.327-337
    • /
    • 2018
  • Lamin A and its alternative splicing product Lamin C are the key intermediate filaments (IFs) of the inner nuclear membrane intermediate filament. Lamin A/C forms the inner nuclear mesh with Lamin B and works as a frame with a nuclear shape. In addition to supporting the function of nucleus, nuclear lamins perform important roles such as holding the nuclear pore complex and chromatin. However, mutations on the Lamin A or Lamin B related proteins induce various types of human genetic disorders and diseases including premature aging syndromes, muscular dystrophy, lipodystrophy and neuropathy. In this review, we briefly overview the relevance of genetic mutations of Lamin A, human disorders and laminopathies. We also discuss a mouse model for genetic diseases. Finally, we describe the current treatment for laminopathies.