References
- Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., et al. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072− 1087
- Archer, C. W., Dowthwaite, G. P., and Francis-West, P. (2003) Development of synovial joints. Birth Defects Res. C Embryo Today 69, 144−155
- Balemans, W. and Van Hul, W. (2007) The genetics of lowdensity lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148, 2622−2629
- Baron, R. and Rawadi, G. (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148, 2635−243
- Baron, R., Rawadi, G., and Roman-Roman, S. (2006) Wnt signaling: a key regulator of bone mass. Curr. Top Dev. Biol. 76, 103−127
- Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22, 85−89
- Bi, W., Huang, W., Whitworth, D. J., Deng, J. M., Zhang, Z., et al. (2001) Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl. Acad. Sci. USA 98, 6698−6703
- Bodine, P. V. and Komm, B. S. (2006) Wnt signaling and osteoblastogenesis. Rev. Endocr. Metab. Disord. 7, 33−39
- Bodine, P. V., Zhao, W., Kharode, Y. P., Bex, F. J., Lambert, A. J., et al. (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222−1237
- Chang, J., Sonoyama, W., Wang, Z., Jin, Q., Zhang, C., et al. (2007) Non-canonical WNT-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem. 282, 30938- 30948 https://doi.org/10.1074/jbc.M702391200
- Chen, Y., Whetstone, H. C., Lin, A. C., Nadesan, P., Wei, Q., et al. (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 4, e249
- Church, V., Nohno, T., Linker, C., Marcelle, C., and Francis- West, P. (2002) Wnt regulation of chondrocyte differentiation. J. Cell Sci. 115, 4809−4818
- Clement-Lacroix, P., Ai, M., Morvan, F., Roman-Roman, S., Vayssiere, B., et al. (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. USA 102, 17406− 17411
- Daumer, K. M., Tufan, A. C., and Tuan, R. S. (2004) Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J. Cell. Biochem. 93, 526−541
- Day, T. F., Guo, X., Garrett-Beal, L., and Yang, Y. (2005) Wnt/ beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739−750
- de Crombrugghe, B., Lefebvre, V., Behringer, R. R., Bi, W., Murakami, S., et al. (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 19, 389−394
- Enomoto-Iwamoto, M., Kitagaki, J., Koyama, E., Tamamura, Y., Wu, C., et al. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev. Biol. 251, 142−156
- Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., et al. (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating RUNX2 gene expression. J. Biol. Chem. 280, 33132−33140
- Gaur, T., Rich, L., Lengner, C. J., Hussain, S., Trevant, B., et al. (2006) Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J. Cell. Physiol. 208, 87−96
- Glass, D. A., 2nd, Bialek, P., Ahn, J. D., Starbuck, M., Patel, M. S., et al. (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751−764
- Glass, D. A., 2nd, and Karsenty, G. (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr. Top Dev. Biol. 73, 43−84
- Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513−523
- Guo, X., Day, T. F., Jiang, X., Garrett-Beal, L., Topol, L., et al. (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404−2417
- Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., et al. (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121, 3529−3537
- Hartmann, C. (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 16, 151-158 https://doi.org/10.1016/j.tcb.2006.01.001
- Hartmann, C. and Tabin, C. J. (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141−3159
- Hartmann, C. and Tabin, C. J. (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341−351
- Hens, J. R., Wilson, K. M., Dann, P., Chen, X., Horowitz, M. C., et al. (2005) TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J. Bone Miner. Res. 20, 1103−1113
- Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W., and Hartmann, C. (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727−738
- Hu, H., Hilton, M. J., Tu, X., Yu, K., Ornitz, D. M., et al. (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49−60
- Huelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C., et al. (2000) Requirement for beta-catenin in anteriorposterior axis formation in mice. J. Cell Biol. 148, 567−578
- Hwang, S. G., Ryu, J. H., Kim, I. C., Jho, E. H., Jung, H. C., et al. (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J. Biol. Chem. 279, 26597−26604
- Hwang, S. G., Yu, S. S., Lee, S. W., and Chun, J. S. (2005a) Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 579, 4837−4842
- Hwang, S. G., Yu, S. S., Ryu, J. H., Jeon, H. B., Yoo, Y. J., et al. (2005b) Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of alpha-catenin. J. Biol. Chem. 280, 12758−12765
- Jin, E. J., Park, J. H., Lee, S. Y., Chun, J. S., Bang, O. S., et al. (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int. J. Biochem. Cell Biol. 38, 183−195
- Johnson, M. L., Harnish, K., Nusse, R., and Van Hul, W. (2004) LRP5 and Wnt signaling: a union made for bone. J. Bone Miner. Res. 19, 1749−1757
- Karsenty, G. and Wagner, E. F. (2002) Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389−406
- Kawakami, Y., Wada, N., Nishimatsu, S. I., Ishikawa, T., Noji, S., et al. (1999) Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev. Growth Differ. 41, 29−40
- Kim, J. B., Leucht, P., Lam, K., Luppen, C., Ten Berge, D., et al. (2007) Bone regeneration is regulated by Wnt signaling. J. Bone Miner. Res. [Epub ahead of print]
- Krishnan, V., Bryant, H. U., and Macdougald, O. A. (2006) Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202−1209
- Kronenberg, H. M. (2003) Developmental regulation of the growth plate. Nature 423, 332−336
- Kronenberg, H. M. (2006) PTHrP and skeletal development. Ann. NY Acad. Sci. 1068, 1−13
- Lai, L. P. and Mitchell, J. (2005) Indian hedgehog: its roles and regulation in endochondral bone development. J. Cell. Biochem. 96, 1163−1173
- Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456−469
- Li, X., Liu, P., Liu, W., Maye, P., Zhang, J., et al. (2005a) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945−952
- Li, X., Zhang, Y., Kang, H., Liu, W., Liu, P., et al. (2005b) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883−19887 https://doi.org/10.1074/jbc.M410310200
- Logan, C. Y. and Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781−810
- MacDonald, B. T., Joiner, D. M., Oyserman, S. M., Sharma, P., Goldstein, S. A., et al. (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41, 331−339
- Mak, K. K., Chen, M. H., Day, T. F., Chuang, P. T., and Yang, Y. (2006) Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133, 3695−3707
- Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman Roman, S., Suc-Royer, I., et al. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934−945
- Moser, A. R., Shoemaker, A. R., Connelly, C. S., Clipson, L., Gould, K. A., et al. (1995) Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev. Dyn. 203, 422−433
- Rawadi, G. and Roman-Roman, S. (2005) Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin. Ther. Targets 9, 1063−1077
- Rodda, S. J. and McMahon, A. P. (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231−3244
- Rountree, R. B., Schoor, M., Chen, H., Marks, M. E., Harley, V., et al. (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol. 2, e355 https://doi.org/10.1371/journal.pbio.0020355
- Rudnicki, J. A. and Brown, A. M. (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev. Biol. 185, 104−118
- Ryu, J. H. and Chun, J. S. (2006) Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J. Biol. Chem. 281, 22039−22047
- Ryu, J. H., Kim, S. J., Kim, S. H., Oh, C. D., Hwang, S. G., et al. (2002) Regulation of the chondrocyte phenotype by betacatenin. Development 129, 5541−5550
- Spater, D., Hill, T. P., Gruber, M., and Hartmann, C. (2006a) Role of canonical Wnt-signalling in joint formation. Eur. Cell. Mater. 12, 71−80
- Spater, D., Hill, T. P., O'Sullivan R, J., Gruber, M., Conner, D. A., et al. (2006b) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133, 3039−3049
- St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072−2086
- Tamamura, Y., Otani, T., Kanatani, N., Koyama, E., Kitagaki, J., et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J. Biol. Chem. 280, 19185−19195
- Tu, X., Joeng, K. S., Nakayama, K. I., Nakayama, K., Rajagopal, J., et al. (2007) Noncanonical Wnt signaling through G protein- linked PKCdelta activation promotes bone formation. Dev. Cell 12, 113−127
- Tufan, A. C., Daumer, K. M., DeLise, A. M., and Tuan, R. S. (2002) AP-1 transcription factor complex is a target of signals from both WnT-7a and N-cadherin-dependent cell-cell adhesion complex during the regulation of limb mesenchymal chondrogenesis. Exp. Cell Res. 273, 197−203
- Tufan, A. C. and Tuan, R. S. (2001) Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered Ncadherin- related functions. FASEB J. 15, 1436−1438
- van Bezooijen, R. L., ten Dijke, P., Papapoulos, S. E., and Lowik, C. W. (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev. 16, 319−327
- van der Horst, G., van der Werf, S. M., Farih-Sips, H., van Bezooijen, R. L., Lowik, C. W., et al. (2005) Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J. Bone Miner. Res. 20, 1867−77
- Wagner, E. F. and Karsenty, G. (2001) Genetic control of skeletal development. Curr. Opin. Genet. Dev. 11, 527−532
- Westendorf, J. J., Kahler, R. A., and Schroeder, T. M. (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341, 19−39
- Yamaguchi, T. P., Bradley, A., McMahon, A. P., and Jones, S. (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211− 1223
- Yang, Y., Topol, L., Lee, H., and Wu, J. (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003− 1015