• Title/Summary/Keyword: molecular profile

Search Result 526, Processing Time 0.023 seconds

Contribution of lysine-containing cationic domains to thermally-induced phase transition of elastin-like proteins and their sensitivity to different stimuli

  • Jeon, Won-Bae
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.22-27
    • /
    • 2011
  • A series of elastin-like proteins, $SKGPG[V(VKG)_3VKVPG]_n$-(ELP1-90)WP (n = 1, 2, 3, and 4), were biosynthesized based on the hydrophobic and lysine linkage domains of tropoelastin. The formation of self-assembled hydrophobic aggregates was monitored in order to determine the influence of cationic segments on phase transition properties as well as the sensitivity to changes in salt and pH. The thermal transition profiles of the proteins fused with only one or two cationic blocks (n = 1 or 2) were similar to that of the counterpart ELP1-90. In contrast, diblock proteins that contain 3 and 4 cationic blocks displayed a triphasic profile and no transition, respectively. Upon increasing the salt concentration and pH, a stimulus-induced phase transition from a soluble conformation to an insoluble aggregate was observed. The effects of cationic segments on the stimuli sensitivity of cationic bimodal ELPs were interpreted in terms of their structural and molecular characteristics.

Expression of Newer Outer Membrane Proteins (OMPs) Induced by Cephalosporins and Quinolone Group of Antibiotics in Klebsiella pneumoniae

  • KY TO;DANA VAN;SHARMA SAROJ;CHHIBBER SANJAY
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.421-424
    • /
    • 2005
  • Effect of antibiotics belonging to three different groups, including third generation cephalosporins, aminoglycosides, and quinolones, on the outer membrane protein (OMP) profile of Klebsiella pneumoniae was examined. It was found that a new OMP (porins) of 40 kDa molecular mass was expressed in Klebsiella pneumoniae, when grown in the presence of ceftazidime, whereas new proteins with 30 kDa and 22 kDa masses were detected in the presence of ofloxacin. The immunoblot analysis showed that the new proteins of 40 kDa and 30 kDa molecular masses were expressed on the outer envelope, when being exposed to antibiotics ceftazidime and ofloxacin, respectively. This finding is important, as the outer surface comes in contact with the immune system, and therefore may have a bearing on the outcome of the disease.

Vapor-liquid Interface of Argon by Using a Test-area Simulation Method

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.167-170
    • /
    • 2012
  • A test-area molecular dynamics simulation method for the vapor-liquid interface of argon through a Lennard-Jones intermolecular potential is presented in this paper as a primary study of interfacial systems. We found that the calculated density profile along the z-direction normal to the interface is not changed with time after equilibration and that the values of surface tension computed from this test-area method are fully consistent with the experimental data. We compared the thermodynamic properties of vapor argon, liquid argon, and argon in the vapor-liquid interface. Comparisons are made with kinetic and potential energies, diffusion coefficient, and viscosity.

Analysis of Folate by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Cha, Sang-Won;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1308-1312
    • /
    • 2003
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to observe folic acid and its derivatives such as tetrahydrofolate and 5-methyltetrahydrofolate in a vitamin tablet and in foods. Folic acid in a vitamin tablet was determined using angiotensin I as an internal reference. Tetrahydrofolic acid, 5-methyltetrahydrofolic acid, and an oxygenated folate were observed from a human blood sample using graphite plate. The results show that these mass spectrometric methods are useful for quickly obtaining a profile of folates.

Dimerization of Fibril-forming Segments of α-Synuclein

  • Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1845-1850
    • /
    • 2009
  • We have performed replica-exchange molecular dynamics (REMD) simulations on the dimer formation of fibrilforming segments of $\alpha$-Synuclein (residues 71 - 82) using implicit solvation models with two kinds of force fields- AMBER parm99SB and parm96. We observed spontaneous formation of dimers from the extensive simulations, demonstrating the self-aggregating and fibril forming properties of the peptides. Secondary structure profile and clustering analysis showed that dimers with antiparallel $\beta$-sheet conformations, stabilized by well-defined hydrogen boding, are major species corresponding to global free energy minimum. Parallel dimers with partial $\beta$-sheets are found to be off-pathway intermediates. The relative instability of the parallel arrangements is due to the repulsive interactions between bulky and polar side chains as well as weaker backbone hydrogen bonds.

Interdiffusion at Interfaces of polymers with Similar Physical Properties

  • Kim, Un Cheon;Lee, Chang Jun;Sim, Hun Gu;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.577-582
    • /
    • 2000
  • Interdiffusion process at interfaces of chemically identical polymers (e.g., deuterated-nondeuterated pairs) with different molecular weights or polymers with similar physical properties, is studied here by varying the diffusion time. Considering the vacancy flux ($J_v$) and adopting the Cahn-Hilliard interracial energy in describing this system, we can see that the variation of the interfacial composition profile with time is asymetric and the interface moves towards the polymer with the lower molecular weight as interdiffusion progresses. Furthermore, interface shift $\Delta\chi$, which characterizes the interdiffusion between polymers, agrees well with the behaviors of the existing experimental data. We can also obtain the interface shift factor C, which can be converted into values of $D_s$ (self-diffusion coefficient of the smaller molecules), from the slopes of the linear fits to the data of the interface shift.

Comprehensive Bioinformation Analysis of the MRNA Profile of Fascin Knockdown in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Luo, Lie-Wei;Li, Chun-Quan;Xie, Jian-Jun;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7221-7227
    • /
    • 2013
  • Background: Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC. Method: In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin. Results: Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes. Conclusions: This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.

Genetic Diversity Studies and Identification of Molecular and Biochemical Markers Associated with Fusarium Wilt Resistance in Cultivated Faba Bean (Vicia faba)

  • Mahmoud, Amer F.;Abd El-Fatah, Bahaa E.S.
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.11-28
    • /
    • 2020
  • Faba bean (Vicia faba L.) is one of the most important legume crops in Egypt. However, production of faba bean is affected by several diseases including fungal diseases. Fusarium wilt incited by Fusarium oxysporum Schlecht. was shown to be the most common wilt disease of faba bean in Assiut Governorate. Evaluation of 16 faba bean genotypes for the resistance to Fusarium wilt was carried out under greenhouse conditions. Three molecular marker systems (inter-simple sequence repeat [ISSR], sequence related amplified polymorphism [SRAP], and simple sequence repeat [SSR]) and a biochemical marker (protein profiles) were used to study the genetic diversity and detect molecular and biochemical markers associated with Fusarium wilt resistance in the tested genotypes. The results showed that certain genotypes of faba bean were resistant to Fusarium wilt, while most of the genotypes were highly susceptible. The percentage of disease severity ranged from 32.83% in Assiut-215 to 64.17% in Misr-3. The genotypes Assiut-215, Roomy-3, Marut-2, and Giza2 were the most resistant, and the genotypes Misr-3, Misr-1, Assiut-143, Giza-40, and Roomy-80 performed as highly susceptible. The genotypes Assiut-215 and Roomy-3 were considered as promising sources of the resistance to Fusarium wilt. SRAP markers showed higher polymorphism (82.53%) compared with SSR (76.85%), ISSR markers (62.24%), and protein profile (31.82%). Specific molecular and biochemical markers associated with Fusarium wilt resistance were identified. The dendrogram based on combined data of molecular and biochemical markers grouped the 16 faba bean genotypes into three clusters. Cluster I included resistant genotypes, cluster II comprised all moderate genotypes and cluster III contained highly susceptible genotypes.

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao;Yu, Shiqiang;Song, Ting;He, Tingting;Shao, Huanhuan;Wang, Haiyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1993-2005
    • /
    • 2016
  • Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

Gene Expression Analysis of Megakaryocytes Derived from Human Umbilical Cord $CD34^+$ Cells by Thrombopoietin

  • Kim, Jeong-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • Although much is known about the molecular biology of platelets, the megakaryocytes' (MKs) molecular biology was not understood so well because of their rareness. By the cloning and characterization of thrombopoietin (TPO), which is the principal regulator of the growth and development of the MKs, researches on the MKs have been growing rapidly. To understand megakaryocytopoiesis, we investigated the gene expression profile of the MKs using oligonucleotide microarray where 10,108 unique genes were spotted. Comparing the fluorescence intensities of which ratio is $\ge$ ${\mid}2{\mid}$, 372 genes were up-regulated and 541 genes were down-regulated in MKs. For confirmatory expression, RNase protection assay (RPA) establishing abundant apoptotic gene expression was carried out. In MKs, many of the known genes, including several platelet related genes, GATA binding protein were highly expressed. Particularly, TGF beta, clusterin (complement lysis inhibitor), and thymosin beta 4 (actin-sequestering molecules) were expressed highly in MKs. As MKs specific expressed genes may regulate normal and pathologic platelet (and/or MK) functions, the transcript profiling using microarray was useful on molecular understanding of MKs,