DOI QR코드

DOI QR Code

Contribution of lysine-containing cationic domains to thermally-induced phase transition of elastin-like proteins and their sensitivity to different stimuli

  • Jeon, Won-Bae (Laboratory of Biochemistry and Cellular Engineering, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2010.08.02
  • Accepted : 2010.09.30
  • Published : 2011.01.31

Abstract

A series of elastin-like proteins, $SKGPG[V(VKG)_3VKVPG]_n$-(ELP1-90)WP (n = 1, 2, 3, and 4), were biosynthesized based on the hydrophobic and lysine linkage domains of tropoelastin. The formation of self-assembled hydrophobic aggregates was monitored in order to determine the influence of cationic segments on phase transition properties as well as the sensitivity to changes in salt and pH. The thermal transition profiles of the proteins fused with only one or two cationic blocks (n = 1 or 2) were similar to that of the counterpart ELP1-90. In contrast, diblock proteins that contain 3 and 4 cationic blocks displayed a triphasic profile and no transition, respectively. Upon increasing the salt concentration and pH, a stimulus-induced phase transition from a soluble conformation to an insoluble aggregate was observed. The effects of cationic segments on the stimuli sensitivity of cationic bimodal ELPs were interpreted in terms of their structural and molecular characteristics.

Keywords

References

  1. Rogenbloom, J., Abrams, W. R. and Mecham R. (1993) Exracellular matrix 4: the elastic fiber. FASEB J. 7, 1208-1218. https://doi.org/10.1096/fasebj.7.13.8405806
  2. Bashir, M. M., Indik, Z., Yeh, H., Ornstein-Goldstein, N., Rosenbloom, J. C., Abrams, W., Fazio, M., Uitto, J. and Rosenbloom, J. (1989) Characterization of the complete human elastin gene. Delineation of unusual features in the 5-flanking region. J. Biol. Chem. 264, 8887-8891.
  3. Brown-Augsburgert, P., Tisdale, C., Broekelmann, T., Sloan, C. and Mecham, R. P. (1995) Identification of an elastin cross-linking domain that joins three peptide chains. J. Biol. Chem. 270, 17778-17783. https://doi.org/10.1074/jbc.270.30.17778
  4. Clarke, A. W., Arnspang, E. C., Mithieux, S. M., Korkmaz, E., Braet, F. and Weiss, S. A. (2006) Tropoelastin massively associates during coacervation to form quantized protein spheres. Biochemistry 45, 9989-9996. https://doi.org/10.1021/bi0610092
  5. Kielty, C. M., Sherratt, M. J. and Shuttleworth, C. A. (2002) Elastic fibres. J. Cell Sci. 115, 2817-2828.
  6. Mart, R. J., Osborne, R. D., Stevens, M. M. and Ulijn, R. V. (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2, 822-835. https://doi.org/10.1039/b607706d
  7. Chilkoti, A., Christensen, T. and MacKay, J. A. (2006) Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10, 652-657. https://doi.org/10.1016/j.cbpa.2006.10.010
  8. Furth, M. E., Atala, A. and Van Dyke, M. E. (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28, 5068-5073. https://doi.org/10.1016/j.biomaterials.2007.07.042
  9. Urry, D. A. (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic proteinbased polymers. J. Phys. Chem. B 101, 11007-11028. https://doi.org/10.1021/jp972167t
  10. Herrero-Vanrell, R., Rincon, A. C., Alonso, M., Reboto, V., Molina-Martinez, I. T. and Rodriguez-Cabello, J. C. (2005) Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J. Control. Release 102, 113-122. https://doi.org/10.1016/j.jconrel.2004.10.001
  11. McHale, M. K., Setton, L. A. and Chilkoti, A. (2005) Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 11, 1768-1779. https://doi.org/10.1089/ten.2005.11.1768
  12. Nicol, A., Gowda, D. C. and Urry, D. W. (1992) Cell adhesion and growth on synthetic elastomeric matrices containing Arg-Gly-Asp-Ser-3. J. Biomed. Mater. Res. A 26, 393-413. https://doi.org/10.1002/jbm.820260309
  13. Massodi, I., Bidwell III, G. L. and Raucher, D. (2005) Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J. Control. Release 108, 396-408. https://doi.org/10.1016/j.jconrel.2005.08.007
  14. Straley, K. and Heilshorn, S. C. (2009) Design and adsorption of modular engineered proteins to prepare customized, neuron-compatible coatings. Front Neuroengineering 2, 1-10.
  15. Bae, Y., Buresh, R. A., Williamson, T. P., Chen, T. H. and Furgeson, D. Y. (2007) Intelligent biosynthetic nanobiomaterials for hyperthermic combination chemotherapy and thermal drug targeting of HSP90 inhibitor geldanamycin. J. Control. Release 122, 16-23. https://doi.org/10.1016/j.jconrel.2007.06.005
  16. Chen, T. H., Bae, Y. and Furgeson, D. Y. (2008) Intelligent biosynthetic nanobiomaterials (IBNs) for hyperthermic gene delivery. Pharm. Res. 25, 683-691. https://doi.org/10.1007/s11095-007-9382-5
  17. Haider, M., Leung, V., Ferrari, F., Crissman, J., Powell, J., Cappello, J. and Ghandehari, H. (2005) Molecular engineering of silk-elastin-like polymers for matrix-mediated gene delivery: biosynthesis and characterization. Mol. Pharm. 2, 139-150. https://doi.org/10.1021/mp049906s
  18. Meyer, D. E. and Chilkoti, A. (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3, 357-367. https://doi.org/10.1021/bm015630n
  19. McPherson, D. T., Xu, J. and Urry, D. W. (1996) Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expr. Purif. 7, 51-57. https://doi.org/10.1006/prep.1996.0008
  20. Meyer, D. E. and Chilkoti, A. (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5, 846-851. https://doi.org/10.1021/bm034215n
  21. Yamaoka, T., Tamura, T., Seto, Y., Tada, T., Kunugi, S. and Tirrell, D. A. (2003) Mechanism for the phase transition of a genetically engineered elastin model peptide $(VPGIG)_{40}$ in aqueous solution. Biomacromolecules 4, 1680-1685. https://doi.org/10.1021/bm034120l
  22. Cho, Y., Zhang, Y., Christensen, T., Sagle, L. B., Chilkoti, A. and Cremer P. S. (2008) Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112, 13765-13771. https://doi.org/10.1021/jp8062977

Cited by

  1. Investigation of Phase Separation Behavior and Formation of Plasmonic Nanocomposites from Polypeptide-Gold Nanorod Nanoassemblies vol.28, pp.16, 2012, https://doi.org/10.1021/la203340y
  2. Effects of Arg–Gly–Asp-modified elastin-like polypeptide on pseudoislet formation via up-regulation of cell adhesion molecules and extracellular matrix proteins vol.9, pp.3, 2013, https://doi.org/10.1016/j.actbio.2012.10.036
  3. Spider silk-bone sialoprotein fusion proteins for bone tissue engineering vol.7, pp.10, 2011, https://doi.org/10.1039/c1sm05024a
  4. Proliferative activity of elastin-like-peptides depends on charge and phase transition vol.104, pp.3, 2016, https://doi.org/10.1002/jbm.a.35609
  5. Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides vol.12, pp.1, 2012, https://doi.org/10.1186/1472-6750-12-61