• Title/Summary/Keyword: molecular mass

Search Result 1,938, Processing Time 0.028 seconds

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

  • Roy, Swapan Kumar;Kim, Seongnyeon;Yoon, Jung H.;Yoon, Yong-Kyu;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its' application for characterizing biophysical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sample processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Improvement of protein identification performance by reinterpreting the precursor ion mass tolerance of mass spectrum (질량스펙트럼의 펩타이드 분자량 오차범위 재해석에 의한 단백질 동정의 성능 향상)

  • Gwon, Gyeong-Hun;Kim, Jin-Yeong;Park, Geon-Uk;Lee, Jeong-Hwa;Baek, Yung-Gi;Yu, Jong-Sin
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2006
  • In proteomics research, proteins are digested into peptides by an enzyme and in mass spectrometer, these peptides break into fragment ions to generate tandem mass spectra. The tandem mass spectral data obtained from the mass spectrometer consists of the molecular weights of the precursor ion and fragment ions. The precursor ion mass of tandem mass spectrum is the first value that is fetched to sort the candidate peptides in the database search. We look far the peptide sequences whose molecular weight matches with precursor ion mass of the mass spectrum. Then, we choose one peptide sequence that shows the best match with fragment ions information. The precursor ion mass of the tandem mass spectrum is compared with that of the digested peptides of protein database within the mass tolerance that is assigned by users according to the mass spectrometer accuracy. In this study, we used reversed sequence database method to analyze the molecular weight distribution of precursor ions of the tandem mass spectra obtained by the FT LTQ mass spectrometer for human plasma sample. By reinterpreting the precursor ion mass distribution, we could compute the experimental accuracy and we suggested a method to improve the protein identification performance.

  • PDF

Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Yang, Li;Zhang, Xu;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.718-724
    • /
    • 2008
  • Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effects on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only $(1.22{\pm}0.02){\times}10^6 Da$. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of $(2.19{\pm}0.05){\times}10^6 Da$ at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

An FMN-containing NADH-quinone reductase from streptomyces sp (An FMN-Containing NADH-Quinone Reductase from Streptomyces sp.)

  • Youn, Hong-Duk;Lee, Jin-Won;Youn, Hwan;Lee, Jeong-Kug;Hah, Yung-Chil;Kang, Sa-Ouk
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.206-213
    • /
    • 1996
  • NADH-quinone reductase was purified 22-fold from the cytosolic fraction of Streptomyces sp. Imsnu-1 to apparent hemogenity, with an overall yield of 9%, by the purification procedure consisting of ammonium, sulfate precipitation and DEAE Sephacryl S-200 and DEAE 5 PW chromatographies. Thes molecular mass of the enzyme determined by gel filtration chromatography was found to be 110 kDa. SDS-PAGE revealed that the enzyme consists of two sugunits with a molecular mass of 54 kDa. The enzyme contained 1 mol of FMN per subunit as a cofactor. The $A_{272}$ A$_{457}$ ratio was 6.14 and the molar extinction coefficients were calculated to be 20, 800 and 25, 400M$^{-1}$ $cm^{-1}$ / AT 349 AND 457 nm, respectively. The N-terminal sequence of the enzyme contained the highly conserved fingerprint of ADP-binding domain. The enzyme used NADH as an electron donor and various quinones as electron acceptors. Cytochrome c was practically inactive. Air-stable flavin semiquinone was produced by the addition of NADH to the enzyme. Also, naphthosemiquinone was detected in the reaction mixture containing the enzyme.

  • PDF

Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models

  • Bae, Min-Suk;Schauer, James J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.219-236
    • /
    • 2009
  • Particle-phase organic tracers (molecular markers) have been shown to be an effective method to assess and quantify the impact of sources of carbonaceous aerosols. These molecular markers have been used in chemical mass balance (CMB) models to apportion primary sources of organic aerosols in regions where the major organic aerosol source categories have been identified. As in the case of all CMB models, all important sources of the tracer compounds must be included in a Molecular Marker CMB (MM-CMB) model or the MMCMB model can be subject to biases. To this end, the application of the MM-CMB models to locations where reasonably accurate emissions inventory of organic aerosols are not available, should be performed with extreme caution. Of great concern is the potential presence of industrial point sources that emit carbonaceous aerosols and have not been well characterized or inventoried. The current study demonstrates that emissions from industrial point sources in the St. Louis, Missouri area can greatly bias molecular marker CMB models if their emissions are not correctly addressed. At a sampling site in the greater St. Louis Area, carbonaceous aerosols from industrial point sources were found to be important source of carbonaceous aerosols during specific time periods in addition to common urban sources (i.e. mobile sources, wood burning, and road dust). Since source profiles for these industrial sources have not been properly characterized, method to identify time periods when point sources are impacting a sampling site, needs to avoid obtaining biases source apportionment results. The use of real time air pollution measurements, along with molecular marker measurements, as a screening tool to identify when point sources are impacting a receptor site is presented.

Filaments and Dense Cores in Perseus Molecular Cloud

  • Chung, Eun Jung;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.38.2-38.2
    • /
    • 2016
  • How dense cores and filaments in molecular clouds form is one of key questions in star formation. To challenge this issue we started to make a systematic mapping survey of nearby molecular clouds in various environments with TRAO 14m telescope equipped with 16 beam array, in high ($N_2H^+$, $HCO^+$ 1-0) and low ($C^{18}O$, $^{13}CO$ 1-0) density tracers (TRAO Multi-beam Legacy Survey of Nearby Filamentary Molecular Clouds, PI: C. W. Lee). We pursue to dynamically and chemically understand how filaments, dense cores, and stars form under different environments. We have performed On-The-Fly (OTF) mapping observations toward L1251, southern part of Perseus molecular cloud, and Serpens main molecular cloud from January to May, 2016. In total, ~3.5 square degree area map of $^{13}CO$ and $C^{18}O$ was simultaneously obtained with S/N of >10 in a velocity resolution of ~0.2 km/s. Dense core regions of ~1.7 square degree area where $C^{18}O$ 1-0 line is strongly detected were also mapped in $N_2H^+$ 1-0 and $HCO^+$ 1-0. The L1251 and Perseus MC are known to be low- to intermediate-mass star-forming clouds, while the Serpens MC is an active low-mass star-forming cloud. The observed molecular filaments will help to understand how the filaments, cores and eventually stars form in a low- and/or intermediate-mass star-forming environment. In this talk, I'll give a brief report on the observation and show preliminary results of Perseus MC.

  • PDF

Analysis of Dual Phosphorylation of Hog1 MAP Kinase in Saccharomyces cerevisiae Using Quantitative Mass Spectrometry

  • Choi, Min-Yeon;Kang, Gum-Yong;Hur, Jae-Young;Jung, Jin Woo;Kim, Kwang Pyo;Park, Sang-Hyun
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.200-205
    • /
    • 2008
  • The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to extracellular stimuli and regulates various activities in eukaryotic cells. Following exposure to stimuli, MAPK is known to be activated via dual phosphorylation at a conserved TxY motif in the activation loop; both threonine and tyrosine residues are phosphorylated by an upstream kinase. However, the mechanism underlying dual phosphorylation is not clearly understood. In the budding yeast Saccharomyces cerevisiae, the Hog1 MAPK mediates the high-osmolarity glycerol (HOG) signaling pathway. Tandem mass spectrometry and phosphospecific immunoblotting were performed to quantitatively monitor the dynamic changes occurring in the phosphorylation status of the TxY motif of Hog1 on exposure to osmotic stress. The results of our study suggest that the tyrosine residue is preferentially and dynamically phosphorylated following stimulation, and this in turn leads to the dual phosphorylation. The tyrosine residue was hyperphosphorylated in the absence of a threonine residue; this result suggests that the threonine residue is critical for the control of signaling noise and adaptation to osmotic stress.

Structural Identification of a Non-Glycosylated Variant at Ser126 for O-Glycosylation Site from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis

  • Byeon, Jaehee;Lim, Yu-Ri;Kim, Hyong-Ha;Suh, Jung-Keun
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.496-505
    • /
    • 2015
  • A variant peak was detected in the analysis of RP-HPLC of rHu-EPO, which has about 7% relative content. Fractions of the main and the variant peaks were pooled separately and further analyzed to identify the molecular structure of the variant peak. Total mass analysis for each peak fraction using ESI-TOF MS shows differences in molecular mass. The fraction of the main peak tends to result in higher molecular masses than the fraction of the variant. The detected masses for the variant are about 600-1000 Da smaller than those for the main peak. Peptide mapping analysis for each peak fraction using Asp-N and Glu-C shows differences in O-glycopeptide profiles at Ser126. The O-glycopeptides were not detected in the fraction of the variant. It is concluded that the variant peak is non-O-glycosylated rHu-EPO and the main peak is fully O-glycosylated rHu-EPO at Ser126.

Molecular Cloning and Sequencing of the Bacillus subtilis cdd Gene Encoding Dooxycytindine-Cytidine Deaminase

  • Song, Bang-Ho;Neuhard, Jan
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.512.1-512
    • /
    • 1986
  • The cdd gene of Bacillus subtilis, encoding the deoxycytidinecytidine deaminase of pyrimidine nucleotide biosynthesis has been cloned into the EcoRl site of pBR322. The recombinant plasmid, pSol, promoted the synthesis of 100-140 fold elevated levels of the enzyme. A comparison of the polypeptides encoded by cdd complementing and non-complementing plasmids in the mini cell showed the gene product to have a molecular mass of approximately 14 kDa. The nucleotide sequence of the gene and 460 base pairs upstream from the coding region was determined. An open-reading frame, encoding a protein with a calculated molecular mass of 14337 Da, was deduced to be the coding region for cdd. However, the enzyme has an apparent molecular mass of 54 kDa as determined by gel filteration, whereas sucrose density gradient centrifugation shows 58 kDa. It means that the enzyme could be forming a tetramer in a physiological state. About 28 amino acids of the N-tetramer in a physiological state. About 28 amino acids of the N-terminal presumably form a signal for membrane translocation and six cystein residues are contained in the structure. S1 nuclease mapping indicated that transcription of cdd is initiated 17 base pairs upstream from the translational start. The structural characterization of the odd gene was performed.

  • PDF

Simultaneous Determination of Alkoxyalcohols in Wet Wipes Using Static Headspace Gas Chromatography and Mass Spectrometry

  • Lee, Soojin;Pyo, Heesoo;Chung, Bong Chul;Kim, Haidong;Lee, Jeongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3280-3288
    • /
    • 2014
  • Alkoxyalcohols are used as solvents or preservatives in various consumer products such as wet wipes. The metabolites of alkoxyalcohols are known to be chronically toxic and carcinogenic to animals. Thus, an analytical method is needed to monitor alkoxyalcohols in wet wipes. The aim of this study was to develop a simultaneous analytical method for 14 alkoxyalcohols using headspace gas chromatography coupled with mass spectrometry to analyze the wet wipes. This method was developed by comparing with various headspace extraction parameters. The linear calibration curves were obtained for the method ($r^2$ > 0.995). The limit of detection of alkoxyalcohols ranged from 2 to $200ng\;mL^{-1}$. The precision of the determinative method was less than 18.20% coefficient of variation both intra and inter days. The accuracy of the method ranged from 82.86% to 119.83%. (2-Methoxymethylethoxy)propanol, 2-phenoxyethanol, and 1-phenoxy-2-propanol were mainly detected in wet wipes.