DOI QR코드

DOI QR Code

Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models

  • Bae, Min-Suk (Civil and Environment Engineering, University of Wisconsin-Madison) ;
  • Schauer, James J. (Civil and Environment Engineering, University of Wisconsin-Madison)
  • Published : 2009.06.30

Abstract

Particle-phase organic tracers (molecular markers) have been shown to be an effective method to assess and quantify the impact of sources of carbonaceous aerosols. These molecular markers have been used in chemical mass balance (CMB) models to apportion primary sources of organic aerosols in regions where the major organic aerosol source categories have been identified. As in the case of all CMB models, all important sources of the tracer compounds must be included in a Molecular Marker CMB (MM-CMB) model or the MMCMB model can be subject to biases. To this end, the application of the MM-CMB models to locations where reasonably accurate emissions inventory of organic aerosols are not available, should be performed with extreme caution. Of great concern is the potential presence of industrial point sources that emit carbonaceous aerosols and have not been well characterized or inventoried. The current study demonstrates that emissions from industrial point sources in the St. Louis, Missouri area can greatly bias molecular marker CMB models if their emissions are not correctly addressed. At a sampling site in the greater St. Louis Area, carbonaceous aerosols from industrial point sources were found to be important source of carbonaceous aerosols during specific time periods in addition to common urban sources (i.e. mobile sources, wood burning, and road dust). Since source profiles for these industrial sources have not been properly characterized, method to identify time periods when point sources are impacting a sampling site, needs to avoid obtaining biases source apportionment results. The use of real time air pollution measurements, along with molecular marker measurements, as a screening tool to identify when point sources are impacting a receptor site is presented.

Keywords

References

  1. Allen, G.A., J. Lawrence, and P. Koutrakis (1999) Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA, Atmos. Environ., 33, 817-823 https://doi.org/10.1016/S1352-2310(98)00142-3
  2. Bae, M.-S, J. Schauer, J. DeMinter, and J. Turner (2004a) Hourly and Daily Patterns of Particle-phase Organic and Elemental Carbon Concentrations in the Urban Atmosphere, J. Air Waste Manage. Assoc., 54, 823-833 https://doi.org/10.1080/10473289.2004.10470957
  3. Bae, M.-S, J. Schauer, J. DeMinter, J. Turner., D. Smith, and R. Cary (2004b) Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method, Atmos. Environ., 38, 2885-2893 https://doi.org/10.1016/j.atmosenv.2004.02.027
  4. Bae, M.-S., J. Schauer, and J. Turner (2006) Estimation of the monthly average ratios of organic mass to organic carbon for fine particulate matter at an urban site, Aerosol Sci. Technol., 40, 1123-1139 https://doi.org/10.1080/02786820601004085
  5. Hildemann, L.M., G.R. Markowski, and G.R. Cass (1991) Chemical-composition of emissions from urban sources of fine organic aerosol, Environ. Sci. Technol., 25(4), 744-759 https://doi.org/10.1021/es00016a021
  6. Huebert, B. and R. Charlson (2000) Uncertainties in data on organic aerosols, Tellus Series B, 52(5), 1249-1255 https://doi.org/10.1034/j.1600-0889.2000.01146.x
  7. Jaeckels, J.M., M.-S. Bae, and J.J. Schauer (2007) Positive Matrix Factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols, Environ. Sci. Technol., 41, 5763-5769 https://doi.org/10.1021/es062536b
  8. Kang, C.M., B.W. Kang, S.W. Young, and H.S. Lee (2008) Application of representative PM2.5 source profiles for the chemical mass balance study in Seoul, J. Korean Soc. Atmos. Environ., 24, 32-43
  9. Lee, H.W., T.J. Lee, S.S. Yang, and D.S. Kim (2008) Identification of atmospheric PM10 sources and estimating their contributions to the Yongin-Suwon bordering area by using PMF, J. Korean Soc. Atmos. Environ., 24(4), 439-454 https://doi.org/10.5572/KOSAE.2008.24.4.439
  10. Lee, J.Y., Y.P. Kim, G.N. Bae, S.M. Park, and H.C. Jin (2008) The characteristics of particulate PAHs concentrations at a roadside in Seoul, J. Korean Soc. Atmos. Environ., 24(2), 133-142 https://doi.org/10.5572/KOSAE.2008.24.2.133
  11. Lough, G., J. Schauer, W. Lonneman, and M. Allen (2005) Summer and winter nonmethane hydrocarbon emissions from on-road motor vehicles in the Midwestern United States, J. Air Waste Manage. Assoc., 55(5), 629-646 https://doi.org/10.1080/10473289.2005.10464649
  12. Mazurek, M., B. Simoneit, G. Cass, and H. Gray (1987) Quantitative high-resolution gas-chromatography and high-resolution gas-chromatography massspectrometry analyses of carbonaceous fine aerosol-particles, Int. J. Environ. Anal. Chem., 29, 119-139 https://doi.org/10.1080/03067318708078415
  13. Ngan, F. and M. Toofan (1991) Modification of preparation of diazomethane for methyl esterification of environmental-samples analysis by gas-chromatography, J Chromatogr. Sci., 29, 8-10 https://doi.org/10.1093/chromsci/29.1.8
  14. Olson, D.A. and G.A. Norris (2008) Chemical characterization of ambient particulate matter near the World Trade Center: Source apportionment using organic and inorganic source markers, Atmos. Environ., 42, 7310-7315 https://doi.org/10.1016/j.atmosenv.2008.07.007
  15. Rogge, W., L. Hildemann, M. Mazurek, and G. Cass (1994) Sources of fine organic aerosol.6. cigarette-smoke in the urban atmosphere, Environ. Sci. Technol., 28, 1375-1388 https://doi.org/10.1021/es00056a030
  16. Rogge, W., L. Hildemann, M. Mazurek, G. Cass, and B. Simoneit (1993a) Sources of fine organic aerosol. 2. noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks, Environ. Sci. Technol., 27(4), 636-651 https://doi.org/10.1021/es00041a007
  17. Rogge, W., L. Hildemann, M. Mazurek, G. Cass, and B. Simoneit (1993b) Sources of fine organic aerosol. 3. road dust, tire debris, and organometallic brake lining dust-roads as sources and sinks, Environ. Sci. Technol., 27(9), 1892-1904 https://doi.org/10.1021/es00046a019
  18. Rogge, W., L. Hildemann, M. Mazurek, G. Cass, and B. Simoneit (1993c) Sources of fine organic aerosol. 4. particulate abrasion products from leaf surfaces of urban plants, Environ. Sci. Technol., 27, 2700-2711 https://doi.org/10.1021/es00049a008
  19. Rogge, W., L. Hildemann, M. Mazurek, G. Cass, and B. Simoneit (1993d) Sources of fine organic aerosol. 5. natural-gas home appliances, Environ. Sci. Technol., 27, 2736-2744 https://doi.org/10.1021/es00049a012
  20. Rogge, W., M. Mazurek, L. Hildemann, G. Cass, and B.R.T. Simoneit (1993e) Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ., 27, 1309 https://doi.org/10.1016/0960-1686(93)90257-Y
  21. Schauer, J. and G.R. Cass (2000) Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers, Environ. Sci. Technol., 34, 1821-1832 https://doi.org/10.1021/es981312t
  22. Schauer, J., B. Mader, J. Deminter, G. Heidemann, M. Bae, J. Seinfeld, R. Flagan, R. Cary, D. Smith, B. Huebert, T. Bertram, S. Howell, J. Kline, P. Quinn, T. Bates, B. Turpin, H. Lim, J. Yu, H. Yang, and M. Keywood (2003) ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon, Environ. Sci. Technol., 37(5), 993-1001 https://doi.org/10.1021/es020622f
  23. Schauer, J., M. Kleeman, G. Cass, and B. Simoneit (1999a) Measurement of emissions from air pollution sources. 1. C-1 through C-29 organic compounds from meat charbroiling, Environ. Sci. Technol., 33, 1566-1577 https://doi.org/10.1021/es980076j
  24. Schauer, J., M. Kleeman, G. Cass, and B. Simoneit (1999b) Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol., 33(10), 1578-1587 https://doi.org/10.1021/es980081n
  25. Schauer, J., M. Kleeman, G. Cass, and B. Simoneit (2002a) Measurement of emissions from air pollution sources. 4. C-1-C-27 organic compounds from cooking with seed oils, Environ. Sci. Technol., 36, 567-575 https://doi.org/10.1021/es002053m
  26. Schauer, J., M. Kleeman, G. Cass, and B. Simoneit (2002b) Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles, Environ. Sci. Technol., 36, 1169-1180 https://doi.org/10.1021/es0108077
  27. Schauer, J., W.F. Rogge, L.M. Hildemann, M.A. Mazurek, and G.R. Cass (1996) Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ., 30, 3837-3855 https://doi.org/10.1016/1352-2310(96)00085-4
  28. Sheesley, R., J. Schauer, E. Bean, and D. Kenski (2004) Trends in secondary organic aerosol at a remote site in Michigan’s upper peninsula, Environ. Sci. Technol., 38(24), 6491-6500 https://doi.org/10.1021/es049104q
  29. Sheesley, R., J. Schauer, Z. Chowdhury, G. Cass, and B. Simoneit (2003) Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia, J. Geophys. Res., 108, 4285 https://doi.org/10.1029/2002JD002981
  30. Simoneit, B., J. Schauer, C. Nolte, D. Oros, V. Elias, M. Fraser, W. Rogge, and G.R. Cass (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173-182 https://doi.org/10.1016/S1352-2310(98)00145-9
  31. Sullivan, A., R. Weber, A. Clements, J. Turner, M. Bae, and J. Schauer (2004) A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site, Geophys. Res. Lett., 31, L13105 https://doi.org/10.1029/2004GL019681
  32. Wang, G., K. Kawamura, and M. Lee (2009) Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005, Atmos. Environ., 43, 219-227 https://doi.org/10.1016/j.atmosenv.2008.09.046
  33. Watson, J., J. Cooper, and J. Huntzicker (1984) The effective variance weighting for least-squares calculations applied to the mass balance receptor model, Atmos. Environ., 18, 1347-1355 https://doi.org/10.1016/0004-6981(84)90043-X
  34. Zheng, M., G. Cass, J. Schauer, and E. Edgerton (2002) Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers, Environ. Sci. Technol., 36, 2361-2371 https://doi.org/10.1021/es011275x

Cited by

  1. A Proposal for the Upgrade of the Current Operating System of the Seoul's Atmospheric Monitoring Network Based on Statistical Analysis vol.29, pp.4, 2013, https://doi.org/10.5572/KOSAE.2013.29.4.447
  2. Source Profile of Road Dust for Statistical Apportionment Modeling in Seoul vol.31, pp.2, 2015, https://doi.org/10.5572/KOSAE.2015.31.2.105
  3. Comparison of Real Time Water Soluble Organic Carbon Measurements by Two PILS-TOC Analyzers vol.32, pp.6, 2016, https://doi.org/10.5572/KOSAE.2016.32.6.633
  4. Optical and thermal characteristics of carbonaceous aerosols measured at an urban site in Gwangju, Korea, in the winter of 2011 vol.66, pp.2, 2016, https://doi.org/10.1080/10962247.2015.1101031