• 제목/요약/키워드: molecular inclusion

검색결과 158건 처리시간 0.026초

Encapsulation of Flavors by Molecular Inclusion Using $\beta$-Cyclodextrin: Comparison with Spray-drying Process Using Carbohydrate-based Wall Materials

  • Cho, Young-Hee;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.185-189
    • /
    • 2009
  • Microencapsulation of flavor was carried out by molecular inclusion process using $\beta$-cyclodextrin (${\beta}CD$). ${\beta}CD$-flavor complex was prepared at various flavor-to-${\beta}CD$ ratios (1:6-1:12) to determine the effect of ${\beta}CD$ concentration on the inclusion efficiency. Maximum total oil retention and minimal surface oil content were obtained at flavors to ${\beta}CD$ ratio of 1:10. The physical properties and controlled release pattern of flavors from ${\beta}CD$-flavor complex were measured and compared with spray-dried microcapsules prepared using carbohydrate wall system. ${\beta}CD$-flavor complex showed higher total oil retention and surface oil contents, smaller mean particle size, lower moisture uptake, and higher oxidation stability than spray-dried microcapsule. Oxidative stability of flavor was correlated with hygroscopicity of wall materials. The controlled release mechanism was highly affected by temperature and characteristics of wall materials.

고분자/베타-사이클로덱스트린 포접 화합물로 이루어진 고분자 혼성체 필름의 물성 및 구조에 미치는 게스트 분자의 영향 (Effect of Guest Molecules on Structure and Properties of Polymer/beta-Cyclodextrin Inclusion Compound Hybrid Films)

  • 배준원
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.504-508
    • /
    • 2021
  • 본 연구에서는 게스트 분자(guest molecule)의 특성이 고분자/베타-사이클로덱스트린(beta-cyclodextrin) 포접화합물(inclusion compound)로 이루어진 고분자 필름의 구조 및 물성에 미치는 영향에 대해서 고찰하고자 한다. 본 연구에서 사용된 게스트 분자는 미백 효과를 지니는 것으로 알려진 3가지로 하이드로퀴논(hydroquinone, HQ), 알부틴(arbutin, AB), 그리고 트랜액사믹 애시드(tranexamic acid, TA)이다. 먼저, 베타-사이클로덱스트린과 게스트 분자 간의 포접화합물의 성공적인 형성과 이를 포함하는 고분자 필름의 제조여부를 라만(Raman) 분광학으로 확인하였다. 포접화합물을 포함하는 고분자 필름의 구조 및 물성은 엑스선 회절법(X-ray diffraction)과 주사열용량법 및 열중량추적법 같은 열분석법으로 고찰하였다. 그 결과, 트랜액사믹 애시드의 영향이 다른 분자의 영향과 비교하여 상당히 상이하였음을 관찰할 수 있었다. 이러한 경향은 간단한 분자 시뮬레이션 기법으로 재검증하였다. 본 연구는 포접화합물을 형성하는 게스트 분자들의 상이한 영향에 대한 체계적인 접근을 통한 실험적 검증의 사례로 향후 관련 연구에 중요한 정보를 제공할 것으로 기대된다.

Molecular Recognition : ${\alpha}$-Cyclodextrin and Aspirin Inclusion Complexation

  • Hee Sook Choi
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.474-479
    • /
    • 1992
  • Molecular interaction between ${\alpha}$-cyclodextrin and aspirin was studied by UV, $^2H$-NMR and $^2H$-NMR spectroscopy analyses for solution complex and by FT-IR analyses for solid complex. The inclusion structure provides a basic understanding of the aspirin and ${\alpha}$-cyclodextrin interaction.

Binding Geometry of Inclusion Complex as a Determinant Factor for Aqueous Solubility of the Flavonoid/β-Cyclodextrin Complexes Based on Molecular Dynamics Simulations

  • Choi, Young-Jin;Lee, Jong-Hyun;Cho, Kum-Won;Hwang, Sun-Tae;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1203-1208
    • /
    • 2005
  • A computational study based on molecular dynamics (MD) simulations was performed in order to explain the difference in aqueous solubilities of two flavonoid/$\beta$-cyclodextrin ($\beta$-CD) complexes, hesperetin/$\beta$-CD and naringenin/$\beta$-CD. The aqueous solubility of each flavonoid/$\beta$-CD complex could be characterized by complexwater interaction not by flavonoid-CD interaction. The radial distribution of water around each inclusion complex elucidated the difference of an experimentally observed solubility of each flavonoid/$\beta$-CD complex. The analyzed results suggested that a bulky hydrophobic moiety (-$OCH_3$) of B-ring of hesperetin nearby primary rim of $\beta$-CD was responsible for lower aqueous solubility of the hesperetin/$\beta$-CD complex.

Directed Mutagenesis of the Bacillus thuringiensis Cry11A Toxin Reveals a Crucial Role in Larvicidal Activity of Arginine-136 in Helix 4

  • Angsuthanasombat, Chanan;Keeratichamreon, Siriporn;Leetacheewa, Somphob;Katzenmeier, Gerd;Panyim, Sakol
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.402-407
    • /
    • 2001
  • Based on the currently proposed toxicity model for the different Bacillus thuringiensis Cry $\delta$-endotoxins, their pore-forming activity involves the insertion of the ${\alpha}4-{\alpha}5$ helical hairpin into the membrane of the target midgut epithelial cell. In this study, a number of polar or charged residues in helix 4 within domain I of the 65-kDa dipteranactive Cry11A toxin, Lys-123, Tyr-125, Asn-128, Ser-130, Gln-135, Arg-136, Gln-139 and Glu-141, were initially substituted with alanine by using PCR-based directed mutagenesis. All mutant toxins were expressed as cytoplasmic inclusions in Escherichia coli upon induction with IPTG. Similar to the wild-type protoxin inclusion, the solubility of each mutant inclusion in the carbonate buffer, pH 9.0, was relatively low When E. coli cells, expressing each of the mutant proteins, were tested for toxicity against Aedes aegypti mosquito-larvae, toxicity was completely abolished for the alanine substitution of arginine at position 136. However, mutations at the other positions still retained a high level of larvicidal activity Interestingly, further analysis of this critical arginine residue by specific mutagenesis showed that conversions of arginine-136 to aspartate, glutamine, or even to the most conserved residue lysine, also abolished the wild-type activity The results of this study revealed an important determinant in toxin function for the positively charged side chain of arginine-136 in helix 4 of the Cry11A toxin.

  • PDF