• Title/Summary/Keyword: molecular gas

Search Result 868, Processing Time 0.019 seconds

Optimization of Analytical Methods for Octacosanol in Related Health-functional Foods with GC-MS (GC-MS를 이용한 건강기능식품 중 옥타코사놀 분석법 개발 연구)

  • Lee, Jin Hee;Oh, Mi Hyune;Lee, Kyung Jin;Kim, Yang Sun;Keum, Eun Hee;Park, Ji Eun;Cho, Mee Hyun;Seong, Min Hye;Kim, Sang A;Kim, Mee hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.266-271
    • /
    • 2018
  • The Ministry of Food and Drug Safety (MFDS) is amending its test methods for health-functional foods (dietary food supplements) to establish regulatory standards and specifications in Korea. In this regard, we continue our research on developing analytical methods for the items. Octacosanol is the major component of polycosanol and is a high-molecular-mass primary fatty alcohol, obtained from sugar cane wax. Previous researchers have shown that octacosanol can lower cholesterol and has antiaggregatory properties, cytoprotective uses, and ergogenic properties for human health. Recently, octacosanol products have been actively introduced into the domestic market because of their functional biological activity. We have developed a sensitive and selective test method for octacosanol that the TMS derivatives by means of gas-chromatographic-tandem mass spectrometry (GC-MS). The trimethylsilyl ether derivative of the target analyte showed excellent chromatographic properties. The procedure was validated in the range of $12.5{\sim}200{\mu}g/L$. Standard calibration curves presented linearity with the correlation coefficient ($r^2$) > 0.999, and the limits of detection (LOD) and limits of quantitation (LOQ) were $4.5{\mu}g/L$ and $13.8{\mu}g/L$, respectively. The high recoveries (92.5 to 108.8%) and precision (1.8 to 2.4%) obtained are in accordance with the established validation criteria. Our research can provide scientific evidence to amend the octacosanol test method for the Health-Functional Food Code.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Determination of metabolites of prostanozol in human urine by LC/ESI/MS and GC/TOF-MS (LC/ESI/MS와 GC/TOF-MS를 이용한 인체뇨시료에서의 Prostanozol 대사체 검출)

  • Yum, Tae-Woo;Paeng, Ki-Jung;Kim, Yun-Je
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.173-182
    • /
    • 2011
  • This research examined prostanozol and its metabolites in urine of women who took the medicine (prostanozol). Prostanozol and its metabolites were successfully separated and detected by using LC/ESI/MS and GC/TOF-MS. Mass spectrum of LC/ESI/MS estimated molecular weight of Prostanozol and its metabolites and that of GC/TOF-MS verified them. For M1, carbon number 17 of Prostanozol substituted to a keto group and it is called 17-keto-Prostanozol. M2 turned out to be hydroxy-17-keto-Prostanozol. It came from substitution of one hydroxyl group of pyrazole nucleus and A-ring of M1. Substitution of one hydroxyl group of B-ring or C-ring became M3, hydroxy-17-keto-Prostanozol. M4 was found to be a hydroxy-17-keto-Prostsnozol transposed from one hydroxyl group to a D-ring. M5 has a hydroxyl group of carbon number 17. One hydroxyl group is substituted from B-ring or C-ring and it is assumed to be hydroxy-17-hydroxy-Prostanozol. M6 was turned out to be dihydroxy-17-keto-Prostanozol transposed from one hydroxyl group to pyrazole nucleus or A-ring and to B-ring or C-ring. Like M6, M7 has a keto group at carbon number 17 and was identified as dihydroxy-17-keto-Prostanozol. M7 has one hydroxyl group at pyrazole nucleus or A-ring and also at D-ring. At last M8 was found to be dihydroxy-17-hydroxy-Prostanozol. Pyrazole nucleus or A-ring has got one hydroxyl group and other rings were substituted to another hydroxyl group. From above, M5, M7 and M8 were verified as new metabolites that were not discovered yet. Prostanozol and all of the 8 metabolites formed glucuronic conjugates as a result of conjugation reaction test in human body. Some of 8 metabolites were excreted without forming conjugates. Particularly M6 and M7 were excreted as sulfate conjugates.

Production of Poly-3-hydroxybutyrate from Xylose by Bacillus megaterium J-65 (Bacillus megaterium J-65에 의한 xylose로부터 poly-3-hydroxybutyrate 생산)

  • Jun, Hong-Ki;Jin, Young-Hi;Kim, Hae-Nam;Kim, Yun-Tae;Kim, Sam-Woong;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1625-1630
    • /
    • 2008
  • A microorganism capable of producing high level of poly-3-hydoxybutyrate (PHB) from xylose was isolated from soil. The isolated strain J-65 was identified as Bacillus megaterium based on the morphological, biochemical and molecular biological characteristics. The optimum temperature and pH for the growth of B. megaterium J-65 were $37^{\circ}C$ and 8.0, respectively. The optimum medium composition for the cell growth was 2% xylose, 0.25% $(NH_4)_2SO_4$, 0.3% $Na_2HPO_4{\cdot}12H_2O$, and 0.1% $KH_2PO_4$. The optimum condition for PHB accumulation was same to the optimum condition for cell growth. Copolymer of ${\beta}$-hydroxybutyric and ${\beta}$-hydroxyvaleric acid was produced when propionic acid was added to shake flasks containing 20 g/l of xylose. Fermenter culture was carried out to produce the high concentration of PHB. In batch culture, cell mass was 9.82 g/l and PHB content was 35% of dry cell weight. PHB produced by B. megaterium J-65 was identified as homopolymer of 3-hydoxybutyric acid by GC and NMR.

A Study on the Pollution of Polycyclic Aromatic Hydrocarbons(PAHs) in the Surface Sediments Around Gwangyang Bay (광양만 주변해역 표층퇴적물에서의 다환방향족탄화수소류(PAHs)의 오염에 관한 연구)

  • You, Young-Seok;Choi, Young-Chan;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.9-20
    • /
    • 2007
  • PAHs(Polycyclic Aromatic Hydrocarbons) are widespread contaminants in the marine environment. They are of mainly anthropogenic origin from urban runoff, oil spill and combustion of fossil fuels. Some PAHs are potentially carcinogenic and mutagenic to aquatic organism The contamination of PAHs in the coastal environments has not been well known yet in Korea. This study was carried out to survey the contamination of PAHs in sediments around Gwangyang bay. The Yeosu petrochemical industrial complex, POSCO(Pohang steel company) and Gwangyang container harbor are located around the bay. PAHs in sediment samples were extracted in soxhlet extractor and were identified and quantified by GC-MS(Gas Chromatography-Mass Spectrometry) TOC(Total Organic carbon) and textural parameters in sediment samples were also analyzed 13 species of PAHs were detected at all of the surface sediments. Total PAHs concentrations in the surface sediments ranged from 171.40 to $1013.54{\mu}g/kg$ dry wt.. In most of the surface sediments, Naphthalene was the highest in the range of 14.08 to $691.39{\mu}g/kg$ dry wt. and Anthracene was the lowest in the range of 0.49 to $22.66{\mu}g/kg$ dry wt.. The correlation coefficients between individual PAHs and Total PAHs in the surface sediments were relatively higher in the low molecular compounds such as Naphthalene and Phenanthrene. In the relationship of the P/A(Phenanthrene/Anthracene) ratio and F/P(Fluoranthene/Pyrene) ratio, P/A ratio was generally above 10 and F/P ratio was shown to be above 1 in all sediment samples. These data indicate that PAHs in sediments around Gwangyang bay seem to be of both pyrolytic and petrogenic origin. Total PAHs in the surface sediments were correlated with TOC and textural parameters. The values of PAHs in the surface and core sediments were lower than the biological effect guidelines.

  • PDF

Anaerobic Ammonium Oxidation(ANAMMOX) in a Granular Sludge Reactor and its Bio-molecular Characterization (입상 슬러지 반응조 내의 혐기성 암모늄 산화(ANAMMOX) 및 분자생태학적 특성 평가)

  • Han, Ji-Sun;Park, Hyun-A;Sung, Eun-Hae;Kim, Chang-Gyun;Yoon, Cho-Hee;Bae, Young-Shin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1213-1221
    • /
    • 2006
  • In this study, granular sludge used in an anaerobic process treating brewery waste was inoculated in a laboratory scale of reactor to induce anaerobic ammonium oxidation(ANAMMOX). The reactor was operated with synthetic wastewater, which prepared at 1:1 ratio of $NH_4^+-N$ over $NO_2^--N$. Changes in nitrogen concentration, COD, alkalinity and gas production were analyzed. There are 3 phases of spanning in experimental period according to influent nitrogen concentration. In the Phase 1, each of the concentration of $NH_4^+-N$ and $NO_2^--N$ were increased from 1.91 $gN/m^3{\cdot}d$ to 14.29 $gN/m^3{\cdot}d$. Ammonium nitrogen loading(same as nitrite nitrogen) was 23.81 $gN/m^3{\cdot}d$ in the Phase 2 and 19.05 $gN/m^3{\cdot}d$ in the Phase 3, respectively $NO_2^--N$ has been removed up to 99% during whole period while the removal efficiency of $NH_4^+-N$ was significantly varied. In Phase 2, $NH_4^+-N$ was removed up to 75%. Microorganisms varied temporally through three phases were characterized by 16s rDNA analysis methods. ANAMMOX bacteria were dominantly found in phase 2 when the removal rate of $NO_2^--N$and $NH_4^+-N$ was the highest up to 99% and 75%, respectively. Due to erroneous exposed to air, the removal efficiency of $NH_4^+-N$ was unexpectedly lowered, but ANAMMOX bacteria still existed.

Absorption of Carbon Dioxide into Aqueous Potassium Salt of Serine (Serine 칼륨염 수용액의 이산화탄소 흡수특성)

  • Song, Ho-Jun;Lee, Seung-Moon;Lee, Joon-Ho;Park, Jin-Won;Jang, Kyung-Ryong;Shim, Jae-Goo;Kim, Jun-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.505-514
    • /
    • 2009
  • Aqueous potassium salt of serine was proposed as an alternative $CO_2$ absorbent to monoethanolamine (MEA) and its $CO_2$ absorption characteristics were studied. The experiment has been conducted using screening test equipment with NDIR type gas analyzer and vapor-liquid equilibrium apparatus. $CO_2$ absorption/desorption rate and net amount of $CO_2$ absorbed in cyclic process are the criteria to assess the $CO_2$ absorption characteristics in this study. Effective $CO_2$ loading of potassium salt of serine and MEA are 0.425 and 0.230 respectively. Cyclic capacities are 0.354 and 0.298 for potassium salt of serine and MEA. The absorption rate of the potassium serinate decreased sharply at $CO_2$ loading is 0.1 and were maintained approximately at half of MEA. To enhance the absorption rate of aqueous potassium salt of serine, small quantities of rate promoters, namely piperazine and tetraethylenepentamine were blended, so that rich $CO_2$ loading were increased by 13.7% and 18.7% respectively. The rich $CO_2$ loading of potassium salt of serine was 29.2% and 35.0% higher than those of aqueous sodium and lithium salt of serine, respectively. The absorption rate of potassium salt of valine and isoleucine which have similar molecular structures to serine were lower than that of serine because of the presence of bulky side group. Precipitation phenomena during $CO_2$ absorption were discussed by the aid of literatures.

Synthesis of Ultrasound Contrast Agent: Characteristics and Size Distribution Analysis (초음파 조영제의 합성 및 합성된 초음파 조영제의 특성 분석)

  • Lee, Hak Jong;Yoon, Tae Jong;Yoon, Young Il
    • Ultrasonography
    • /
    • v.32 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Purpose: The purpose of this study is to establish the methodology regarding synthesis of ultrasound contrast agent imaging, and to evaluate the characteristics of the synthesized ultrasound contrast agents, including size or degradation interval and image quality. Materials and Methods: The ultrasound contrast agent, composed of liposome and SF6, was synthesized from the mixture solution of $21{\mu}mol$ DPPC (1, 2-Dihexadecanoyl-sn-glycero-3-phosphocholine, $C_{40}H_{80}NO_8P$), $9{\mu}mol$ cholesterol, $1.9{\mu}mol$ of DCP (Dihexadecylphosphate, $[CH_3(CH_2)_{15}O]_2P(O)OH$), and chloroform. After evaporation in a warm water bath and drying during a period of 12-24 hours, the contrast agent was synthesized by the sonication process by addition of buffer and SF6 gas. The size of the contrast agent was controlled by use of either extruder or sonication methods. After synthesis of contrast agents, analysis of the size distribution of the bubbles was performed using dynamic light scattering measurement methods. The degradation curve was also evaluated by changes in the number of contrast agents via light microscopy immediate, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, and 84 hours after synthesis. For evaluation of the role as an US contrast agent, the echogenicity of the synthesized microbubble was compared with commercially available microbubbles (SonoVue, Bracco, Milan, Italy) using a clinical ultrasound machine and phantom. Results: The contrast agents were synthesized successfully using an evaporation-drying-sonication method. The majority of bubbles showed a mean size of 154.2 nanometers, and they showed marked degradation 24 hours after synthesis. ANOVA test revealed a significant difference among SonoVue, synthesized contrast agent, and saline (p < 0.001). Although no significant difference was observed between SonoVue and the synthesized contrast agent, difference in echogenicity was observed between synthesized contrast agent and saline (p < 0.01). Conclusion: We could synthesize ultrasound contrast agents using an evaporation-drying-sonication method. On the basis of these results, many prospective types of research, such as anticancer drug delivery, gene delivery, including siRNA or microRNA, targeted molecular imaging, and targeted therapy can be performed.