Anaerobic Ammonium Oxidation(ANAMMOX) in a Granular Sludge Reactor and its Bio-molecular Characterization

입상 슬러지 반응조 내의 혐기성 암모늄 산화(ANAMMOX) 및 분자생태학적 특성 평가

  • Han, Ji-Sun (Department of Environmental Engineering, Inha University) ;
  • Park, Hyun-A (Department of Environmental Engineering, Inha University) ;
  • Sung, Eun-Hae (Department of Environmental Engineering, Inha University) ;
  • Kim, Chang-Gyun (Department of Environmental Engineering, Inha University) ;
  • Yoon, Cho-Hee (Department of Environmental Engineering, Kyungnam University) ;
  • Bae, Young-Shin (SUDOKWON Landfill Site Management Corp.)
  • Published : 2006.11.30

Abstract

In this study, granular sludge used in an anaerobic process treating brewery waste was inoculated in a laboratory scale of reactor to induce anaerobic ammonium oxidation(ANAMMOX). The reactor was operated with synthetic wastewater, which prepared at 1:1 ratio of $NH_4^+-N$ over $NO_2^--N$. Changes in nitrogen concentration, COD, alkalinity and gas production were analyzed. There are 3 phases of spanning in experimental period according to influent nitrogen concentration. In the Phase 1, each of the concentration of $NH_4^+-N$ and $NO_2^--N$ were increased from 1.91 $gN/m^3{\cdot}d$ to 14.29 $gN/m^3{\cdot}d$. Ammonium nitrogen loading(same as nitrite nitrogen) was 23.81 $gN/m^3{\cdot}d$ in the Phase 2 and 19.05 $gN/m^3{\cdot}d$ in the Phase 3, respectively $NO_2^--N$ has been removed up to 99% during whole period while the removal efficiency of $NH_4^+-N$ was significantly varied. In Phase 2, $NH_4^+-N$ was removed up to 75%. Microorganisms varied temporally through three phases were characterized by 16s rDNA analysis methods. ANAMMOX bacteria were dominantly found in phase 2 when the removal rate of $NO_2^--N$and $NH_4^+-N$ was the highest up to 99% and 75%, respectively. Due to erroneous exposed to air, the removal efficiency of $NH_4^+-N$ was unexpectedly lowered, but ANAMMOX bacteria still existed.

본 연구에서는 혐기성 암모늄 산화(ANAMMOX)반응을 유도하기 위해 양조폐수를 처리하는 메탄 생성 반응조의 입상 슬러지를 혐기성 반응기에 식종하였다. 암모니아성 질소($NH_4^+-N$)와 아질산성 질소($NO_2^--N$)를 1:1의 비율로 인공폐수를 조제하여 반응조를 운전하였다. 실험기간은 반응기의 유입 질소농도 조건에 따라 3개의 phase로 구분하였다. 각 phase별 유출수의 질소농도, COD, 알칼리도, 발생 가스 조성을 측정하여 처리효율을 평가하였다. Phase 1에서는 유입 $NH_4^+$-N $NO_2^-$-N를 각각 1.91 $gN/m^3{\cdot}d$부터 14.29 $gN/m^3{\cdot}d$까지 점차 높였으며 Phase 2에서 각 질소의 부하를 23.81 $gN/m^3{\cdot}d$, Phase 3에서는 19.05 $gN/m^3{\cdot}d$로 하여 운전하였다. 아질산성 질소($NO_2^-$-N)는 전 기간에 걸쳐 99%까지 제거 되었으며, 암모니아성 질소($NH_4^+-N$)의 제거율은 각 phase별로 변동폭이 높았으며 이 중 Phase 2에서 최대 75%까지 제거되었다. 한편 각 phase별 반응조의 미생물 군집 변화는 16s rDNA방법을 이용하여 분석하였다. 입상 슬러지의 접종 초기인 Phase 1의 경우 메탄생성이 일정하게 유지되었으며 메탄균과 탈질균이 공존하였다. Phase 2의 경우 아질산성 질소($NO_2^--N$)와 암모니아성 질소($NH_4^+-N$)의 제거율이 각각 99%와 75%까지 증가하였으며 이 때 ANAMMOX균의 존재가 확인되었다. Phase 3의 경우 외부 공기 유입으로 인하여 암모니아성 질소(NH4+-N)의 제거율은 급격히 감소하였으나 미생물 군집 중 여전히 ANAMMOX균이 관측되었다.

Keywords

References

  1. Broda, E., 'Two kinds of lithotrophs missing in nature,' Z. Allg. Mikrobiol., 17, 491-493(1977) https://doi.org/10.1002/jobm.3630170611
  2. Van de Graaf, A. A., Mulder, A., de Bruijn. P., Jetten, M. S. M., Robertson, L. A., and Kuenen, J. G., 'Anaerobic oxidation of ammonium is a biologically mediated process,' Appl. Environ. Microbiol., 61, 1246-1251(1995)
  3. Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M., 'The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammoniumoxidizing microorganisms,' Appl. Microbiol. Biotechnol., 50, 589 - 596(1998) https://doi.org/10.1007/s002530051340
  4. van Dongen, L. G. J. M., Jetten, M. S. M., and van Loosdecht, M. C. M., 'The Combined Sharon/Anammox Process,' STOWA Report, IWA Publishing(2001)
  5. Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer. G., van de Pas-Schoonen, K. T., Kuenen, J. G., Jetten, M. S. M., 'Missing lithotroph identified as new planctomycete,' Nature, 400, 446-449(1999) https://doi.org/10.1038/22749
  6. Van de Graaf, A. A., de Bruijn. P., Robertson, L. A., Jetten, M. S. M., Robertson, L. A., and Kuenen, J. G., 'Autotrophic growth anaerobic ammonium-oxidizing micro-organism in a fluidized bed reactor,' Microbiology, 142, 2178 - 2196(1996)
  7. de Bruijn, P., Van de Graaf, A. A., Jetten, M. S. M., Robertson, L. A., and Kuenen, J. G., 'Growth of Nitrosomonas europaea on hydroxylamine,' FEMS. Microbiol. Lett., 125, 179-184(1995)
  8. Schmidt. I. and Bock. E., 'Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha,' Arch. Microbiol., 167, 106-111(1997) https://doi.org/10.1007/s002030050422
  9. 박현아, 한지선, 김창균, '분자생물학적 방법을 이용한 매립지 미생물 군집 분석 및 안정화 지표 개발,' 대한환경공학희, 춘계학술연구발표희 논문집, 611-616(2005)
  10. Strous, M., Kuenen, J. G., and Jetten, M. S. M., 'Key physiology of anaerobic ammonium oxidation,' Appl. Environ. Microbiol., 65, 3248 - 3250(1999)
  11. Helmer, C., Tromm, C., Hippen, A., Rosenwinkel, K. H., Seyfried, C. F., and Kunst, S., 'Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems,' Water Sci. Technol., 43, 311-320(2001)
  12. Mulder, A., van de Graaf, A. A., Robertson, L. A., and Kuenen, J. G., 'Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor,' FEMS. Microbiol. Ecol., 16, 177-184(1995) https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  13. Nielsen, M., Bollmann, A., Sliekers, 0., Jetten, M., Schmidt, I., Larsen, L. H., Nielsen, L. P., Revsbech, N. P., 'Kinetics, diffusional limitation and microscale distribution of chemistry and organi는 in a CANON reactor,' FEMS. Microbiol. Ecol., 51, 247 -256(2005) https://doi.org/10.1016/j.femsec.2004.09.003
  14. Ahn, Y. H., Kim, H. C., Hwang, I. S., 'Nutrient removal and microbial granulation in anaerobic process treating inorganic and organic nitrogenous wastewater,' ICWNR, 04, 26-29(2004)
  15. 김동진, 한동우, 윤호준, 이수철, 이현용, 차기철, 유익근, 박완철, 'SBR을 이용한AMMOX 미생물 배양 및 Fluorescence in situ Hybridization에 의한 미생물 군집 분석,' 대한환경공학회지, 24, 655-663(2002)
  16. Jianlong, W., Jing, K., 'The characteristics of anaerobic ammonium oxidation(ANAMMOX) by granular sludge from an EGSB reactor,' Process Biochemistry, 40, 1973-1978( 2005) https://doi.org/10.1016/j.procbio.2004.08.001
  17. 황인수, 안영호, 민경석, '혐기성 슬러지상 반응조를 이용한 돈사폐수의 암모늄 제거,' 대한토목학회, 22, 615-621(2002)
  18. 이명숙, 박지현, '암모니아 산화세균의 분리와 그 특성,' 한수지, 31(5), 760-766(1998)
  19. Stackebrandt, E., Goebel, B. M., 'A place for DNADNA reassociation and 16S rRNA sequence analysis inthe present species definition in bacteriology,' Int. J Syst. Bacteriol., 44, 846-849(1994) https://doi.org/10.1099/00207713-44-4-846
  20. XU, J., TRIMBLE, J. J., and LOGAN, B. E., 'Perchlorate reduction and denitrification pathways are separate in perchlorate reducing bacteria,' In The 102nd general meeting of American Society for Microbiology, Salt Lake City, Utah.(2002)
  21. Sabine, B., Emile, S., Georg, F., 'Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera arornatica,' J. Bacterialogy, 10, 5849 - 5863(2000)
  22. Ficker, M., Krastel, K., Orlicky, S., and Edwards, E. 'Molecular characterization of a toluene-degrading methanogenic consortium,' Appl. Environ. Microbiol., 65(12), 5576 - 5585(1999)
  23. Robert, T. A., Helen, A. V., Irene, O-B., Charles, T. R., Philip, E. L., Richard, D., Ken, K., Sam, M., Donald, R. M., Aaron, P., David, C. W., Mary, L., Derek, R. L., 'Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer,' Appl. Environ. Microbiol., 10, 5884 - 5891(2003)
  24. Lovley, D. R., Phillips, E. J. P., 'Bioremediation of uranium contamination with enzymatic uranium reduction,' Environ. Sci. Technol., 26, 2228 - 2234(1992) https://doi.org/10.1021/es00035a023
  25. Hovanec, T. A., Taylor, L. T., Blakis, A., Delong, E. F., 'Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria,' Appl. Environ. Microbiol., 64, 258 - 264(1998)
  26. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington D.C., USA(1988)