• Title/Summary/Keyword: molecular functions

Search Result 1,395, Processing Time 0.023 seconds

Identification and Functional Analysis of the Chain Length Determinant Gene ste8 Involved in the Biosynthesis of Ebosin by Streptomyces sp. 139

  • Yang, Zhang;Li, Xiaohua;Qi, Xiaoqaing;Shan, Junjie;Jiang, Rong;Guo, Lianhong;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1500-1508
    • /
    • 2013
  • Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139, has obvious antirheumatic arthritis activity in vivo, and its biosynthesis gene cluster (ste), consisting of 27 open reading frames, has been identified. This paper reports our study of the gene functionality of ste8, the predicted protein product of which is homologous to some bacterial chain length determinant Wzz proteins. For characterization of Ste8, ste8 was cloned and expressed in the mutant strain E. coli 086:H2 (${\Delta}wzz$). The functional complementation of wzz by ste8 was demonstrated by the restoration of wild-type lipopolysaccharide biosynthesis and increased levels of serum resistance of E. coli 086:H2 (${\Delta}wzz$) (pET30a-ste8). To examine the function of ste8 in ebosin biosynthesis, the gene was knocked out with a double crossover via homologous recombination. The molecular weight of the ebosin derivative EPS-8m produced by the mutant Streptomyces sp. 139 ($ste8^-$) was much lower than that of ebosin, and the binding activity of EPS-8m for IL-1R decreased significantly compared with ebosin. These results demonstrate that ste8 encodes a chain length determinant (Wzz) that functions in ebosin biosynthesis.

Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

  • Yang, Jung Yoon;Park, Min Young;Park, Sam Young;Yoo, Hong Il;Kim, Min Seok;Kim, Jae Hyung;Kim, Won Jae;Jung, Ji Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells.

Wireless Energy and Data Transmission Using Inductive Coupling (유도결합방식에 의한 무선 에너지 및 데이터 전송)

  • Lee, Joon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • Bio-implantable devices such as heart pacers, gastric pacers and drug-delivery systems require power for carrying out their intended functions. These devices are usually powered through a battery implanted with the system or are wired to an external power source. This paper describes an inductive power transmission link, which was developed for an implantable stimulator for direct stimulation of denervated muscles. The carrier frequency is around 1MHz, the transmitter coil has a diameter of 46mm, and the implant coil is 46mm. Data transmission to the implant with amplitude shift keying (ASK) and back to the transmitter with passive telemetry can be added without major design changes. We chose the range of coil spacing (2 to 30mm) to care for lateral misalignment, as it occurs in practical use. If the transmitter coil has a well defined and reliable position in respect to the implant, a smaller working range might be sufficient. Under these conditions the link can be operated in fixed frequency mode, and reaches even higher efficiencies of up to 37%. The link transmits a current of 50 mA over a distance range of 2-15 mm with an efficiency of more than 20% in tracking frequency. The efficiency of the link was optimized with different approaches. A class E transmitter was used to minimize losses of the power stage. The geometry and material of the transmitter coil was optimized for maximum coupling. Phase lock techniques were used to achieve frequency tracking, keeping the transmitter optimally tuned at different coupling conditions caused by coil distance variations.

  • PDF

Isolation and Characterization of a Formate Dehydrogenase cDNA in Poplar (Populus alba ${\times}$ P. glandulosa) (현사시나무에서 Formate Dehydrogenase cDNA의 분리와 특성 구명)

  • Bae, Eun-Kyung;Lee, Hyoshin;Lee, Jae-Soon;Choi, Young-Im;Yoon, Seo-Kyung;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Formate dehydrogenase (FDH), catalyzing the oxidation of the formate ion to carbon dioxide, is known as the stress protein in response to drought, low temperature and pathogen infection. To study the functions of FDH in poplar (Populus alba ${\times}$ P. glandulosa), we isolated a FDH cDNA (PagFDH1) and examined its expressional characteristics. The PagFDH1 is 1,499 base pairs long and encodes a putative 388 amino acid protein with an expected molecular mass of 42.5 kDa. The PagFDH1 protein has N-terminal mitochondria signal peptide and $NAD^+$ binding domain. Southern blot analysis indicated that a single copy of the PagFDH1 is present in the poplar genome. PagFDH1 is expressed highly in the suspension cells (especially in the lag and early exponential phases) and moderately in roots, flowers and leaves. ABA-mediated enhanced expression of PagFDH1 in response to drought and salt stress treatments indicates that the gene product could play an important role in the development of stress resistant trees.

Comparative Gene-Expression Analysis of Periodontal Ligament and Dental Pulp in the Human Permanent Teeth (사람 영구치에서 치주인대 및 치수 조직의 유전자 발현에 대한 비교 연구)

  • Lee, Suk Woo;Jeon, Mijeong;Lee, Hyo-Seol;Song, Je Seon;Son, Heung-Kyu;Choi, Hyung-Jun;Jung, Han-Sung;Moon, Seok-Jun;Park, Wonse;Kim, Seong-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.166-175
    • /
    • 2016
  • There is no genetic activity information with the functions of dental pulp and periodontal ligament in human. The purpose of this study was to identify the gene-expression profiles of, and the molecular biological differences between periodontal ligament and dental pulp obtained from human permanent teeth. cDNA microarray analysis identified 347 genes with a fourfold or greater difference in expression level between the two tissue types 83 and 264, of which were more plentiful in periodontal ligament and dental pulp, respectively. Periodontal ligament exhibited strong expression of genes related to collagen synthesis (FAP), collagen degradation (MMP3, MMP9, and MMP13), and bone development and remodeling (SSP1, BMP3, ACP5, CTSK, and PTHLH). Pulp exhibited strong expression of genes associated with calcium ions (CALB1, SCIN, and CDH12) and the mineralization and formation of enamel and dentin (SPARC/SPOCK3, PHEX, AMBN, and DSPP). Among these genes, SPP1, SPARC/SPOCK3, AMBN, and DSPP were well known in dental research. However, the other genes are the newly found and it may help to find a good source of regenerative therapy if further study is performed.

Examination of Color Difference in Elastic Pavement that uses EPDM Chip using Ultraviolet Ray Accelerated Weathering Test (자외선 촉진 내후성 시험에 의한 EPDM Chip을 사용한 탄성포장의 색차분석)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.91-98
    • /
    • 2011
  • Recently, the usage of elastic paving using EPDM Chip instead of pedestrian sidewalk blocks or permeable concrete used mostly for pedestrian walk, trails and in parks has been increassed as it can absorb impact during walking and produce wide range of colors and designs. However, the properties of EPDM Chip including elasticity and durability are decreased when exposed to ultraviolet ray and scenic paving functions through various colors are lowered due to the yellowing phenomenon. In this study, ultraviolet ray accelerated weathering test has been conducted to analyze the color changes in EPDM Chip and polyurethane resin, which are the main ingredients of elastic paving, when exposed to ultraviolet ray. The color differences are quantitatively analyzed through the color value coordination of the colored space by using the color difference scheme. The experimental results show that the color changes in BL polyurethane resin which is used most frequently at present was larger than that of EPDM Chip. Moreover, the total color difference, ${\Delta}E$, of BC polyurethane resin are 3.162 on the $14^{th}$ day of commencement of acceleration, which is 6 times greater color change resistance against ultraviolet ray than that of BL polyurethane resin with total color difference of 20.639. Therefore, the usage of BC polyurethane resin, which is manufactured to have chain-type molecular structure by using the isocyanate as the HMDI at the time of producing polymer, as binder in elastic paving with EPDM Chip is found to be a highly efficient method of restraining the color changes due to the ultraviolet ray.

Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues

  • Ryu, Sang Eun;Shim, Tammy;Yi, Ju-Yeon;Kim, So Yeun;Park, Sun Hwa;Kim, Sung Won;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.954-965
    • /
    • 2017
  • Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences. Next, we investigated the expression pattern and distribution of this conserved amino acid motif among a broad range of odorant receptors. To examine the localization of odorant receptor proteins, we used a sequence-specific peptide antibody against CAS-TM7 which is specific to odorant receptors across species. The specificity of this peptide antibody in recognizing odorant receptors has been confirmed in a heterologous in vitro system and a rat-based in vivo system. The CAS-TM7 odorant receptors localized with distinct patterns at each region of the olfactory epithelium; septum, endoturbinate and ectoturbinate. To our great interests, we found that the CAS-TM7 odorant receptors are primarily localized to the dorsal region of the olfactory bulb, coinciding with olfactory epithelium-based patterns. Also, these odorant receptors were ectopically expressed in the various non-olfactory tissues in an evolutionary constrained manner between human and rats. This study has characterized the expression patterns of odorant receptors containing particular amino acid motif in transmembrane domain 7, and which led to an intriguing possibility that the conserved motif of odorant receptors can play critical roles in other physiological functions as well as olfaction.

CK2 phosphorylates AP-2α and increases its transcriptional activity

  • Ren, Kaiqun;Xiang, Shuanglin;He, Fangli;Zhang, Wenfeng;Ding, Xiaofeng;Wu, Yanyang;Yang, Liping;Zhou, Jianlin;Gao, Xiang;Zhang, Jian
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.490-495
    • /
    • 2011
  • Transcription factor AP-$2{\alpha}$ involves in the process of mammalian embryonic development and tumorigenesis. Many studies have shown that AP-$2{\alpha}$ functions in association with other interacting proteins. In a two-hybrid screening, the regulatory subunit ${\beta}$ of protein casein kinase 2 ($CK2{\beta}$) was identified as an interacting protein of AP-$2{\alpha}$; we confirmed this interaction using in-vitro GST pull-down and in-vivo co-immunoprecipitation assays; in an endogenous co-immunoprecipitation experiment, we further found the catalytic subunit ${\alpha}$ of protein casein kinase 2 ($CK2{\alpha}$) also exists in the complex. Phosphorylation analysis revealed that AP-$2{\alpha}$ was phosphorylated by CK2 kinase majorly at the site of Ser429, and such phosphorylation could be blocked by CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in a dose-dependent manner. Luciferase assays demonstrated that both $CK2{\alpha}$ and $CK2{\beta}$ enhanced the transcription activity of AP-$2{\alpha}$; moreover, $CK2{\beta}$ increased the stability of AP-$2{\alpha}$. Our data suggest a novel cellular function of CK-2 as a transcriptional co-activator of AP-$2{\alpha}$.

In Silico Molecular Docking Comparison of Tubocurarine and the Active Ingredients of Cimicifugae rhizoma on Acetylcholine Binding Proteins (In Silico 분자결합 분석방법을 활용한 tubocurarine과 승마 추출성분 actein의 아세틸콜린 결합 단백질 활성 부위에 대한 결합 친화도 비교 분석)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.408-414
    • /
    • 2018
  • Actein is the well-known active ingredient of Cimicifugae rhizoma (Black cohosh). In this study, we investigated and compared the binding affinity of tubocurarine, actein, and actein derivatives on the B&C domain of the acetylcholine binding protein through in silico computational docking studies. The three-dimensional crystallographic structure of the acetylcholine binding protein B&C domain was obtained from the PDB database (PDB ID: 2XYT). An in silico computational autodocking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm based on scoring functions. The actein showed an optimum binding affinity (docking energy), with the acetylcholine binding protein at -10.50 kcal/mol as compared to the tubocurarine (-9.80 kcal/mol). The interacting amino acids tryptophan 84 and tryptophan 147, in the B domain of the acetylcholine binding protein active site, significantly interacted with the actein and 27-deoxyactein, and (26R)-actein. The centroid XYZ grid position of the tubocurarine was X=38.300689, Y=112.053467, and Z=51.991022, but the actein and its derivatives showed values around X=26.4, Y=127.3, Z=43.7. These results clearly indicated that actein and its derivatives could be a more potent antagonist to the acetylcholine binding protein than tubocurarine. Therefore, the extract of Cimicifugae rhizoma or actein containing biomaterials can substitute for the botulinum toxin-mediated acetylcholine receptor regulation, and be applied to the anti-wrinkle cosmetics industry.

Microbial Production of Carotenoids: Biological Functions and Commercial Applications (미생물에 의한 카로티노이드 생산; 생물학적 기능성 및 상업적 적용)

  • Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.726-737
    • /
    • 2017
  • Carotenoids are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. They typically consist of a $C_{40}$ hydrocarbon backbone often modified by different oxygen-containing functional groups, to yield cyclic or acyclic xanthophylls. Much work has also been focused on the identification, production, and utilization of natural sources of carotenoid (plants, microorganisms and crustacean by-products) as an alternative to the synthetic pigment which currently covers most of the world markets. Nevertheless, only a few carotenoids (${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, and lutein) can be produced commercially by fermentation or isolation from the small number of abundant natural sources. The market and demand for carotenoids is anticipated to increase dramatically with the discovery that carotenoids exhibit significant anti-carcinogenic activities and play an important role in the prevention of chronic diseases. The increasing importance of carotenoids in the feed, nutraceutical food and pharmaceutical markets has renewed by efforts to find ways of producing additional carotenoid structures in useful quantities. Because microorganisms and plants synthesize hundreds of different complex chemical carotenoid structures and a number of carotenoid biosynthetic pathways have been elucidated on a molecular level, metabolic and genetic engineering of microorganisms can provide a means towards economic production of carotenoid structures that are otherwise inaccessible. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoid in the diet and review the efforts that have been made to increase carotenoid in certain microorganisms.