• Title/Summary/Keyword: molecular functions

Search Result 1,410, Processing Time 0.026 seconds

MicroRNA-122 Promotes Proliferation, Invasion and Migration of Renal Cell Carcinoma Cells Through the PI3K/Akt Signaling Pathway

  • Lian, Ji-Hu;Wang, Wei-Hua;Wang, Jia-Qiang;Zhang, Yu-Hong;Li, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5017-5021
    • /
    • 2013
  • Objective: MicroRNAs (miRNAs) are a small class of non-coding, single-stranded RNAs with a critical role in genesis and maintenance of renal cancer mainly through binding to 3'-untranslated regions (3'UTR) of target mRNAs, which causes a block of translation and/or mRNA degradation. The aim of the present study was to investigate the potential effects of miR-122 in human renal cell carcinomas. Methods: The expression level of miR-122 was quantified by qRT-PCR. MTT, colony formation, invasion and migration assays were used to explore the potential functions of miR-122 in human renal cell carcinoma cells. Results: Cellular growth, invasion and migration in two A498 and 786-O cells were significantly increased after miR-122 transfection. Further experiments demonstrated that overexpression of miR-122 resulted in the increase of phospho-Akt (Ser473) and phospho-mTOR (Ser2448), then activation of mTOR targets, p70S6K and 4E-BP1. Conclusions: The up-regulation of miR-122 may play an important role in the progress of renal cancer through activating PI3K/Akt signal pathway and could be a potential molecular target for anti-cancer therapeutics.

Fatty Acid Compositions of Varying Seed Oils of Korean Origin (한국산(韓國産) 각종(各種) 종실유(種實油)의 지방산(脂肪酸)에 관(關)한 연구(硏究))

  • Mo, Su-Mi
    • Journal of Nutrition and Health
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 1975
  • The role of fat is important from nutritional standpoint. The physiological functions of fat are energy yielding as well as the carrier of fat soluble vitamins, with special activities of essential fatty acids. It is fortunate that Korean families prefer to use vegetable oils rather than those from animal origin. But the problems are focused on better qaulity of food oils with attempt to exploit the available resources. This study was undertaken to inevestigate the fatty acid compositions of Korean origin both from conventional and unconventional resources of gas-liquid chromatography. The results obtained are as follows. 1. The total lipid contents of seeds of red pepper, Korean squash, sesame, perilla (var Japonica), and Korean pine nuts and walnuts were 24.3%, 56.6%, 56.4%, 46.9%, 69.8%, and 67.2%, respectively. 2. The saponification numbers of samples ranged from 190 to 200. It showed that the mean molecular weights of fatty acids composing the lipids were very much closed each other. 3. Iodine numbers of varing seed oils ranged from 96.5 of Korean squash seed oil to 124.6 of walnut oil. Oils obtained from squash seeds and sesame seeds showed significantly lower value, while others ranged from 122 to 125. 4. In the fatty acid compositions, squash seed oil was composed mainly of unsaturated fatty acids, 74.9% of which was oleic acid, whereas red pepper seed oil, pine nut oil, and sesame oil contained linoleic acid as a major component showing 64.4%, 56%, 48.8%, and 47.8%, respectively. In perilla seed oil, the amounts of linoleic and linolenic acids were 14.1% and 58%, respectively which meant nearly three-fourths of the total fatty acidsbeing the unsaturated essential fatty acids. This study will encourage the use of these conventional and unconventional vegetable oils which have highr ratios of polyunsaturated to saturated fatty acids.

  • PDF

3-Hydrogenkwadaphnin Induces Monocytic Differentiation and Enhances Retinoic Acid-mediated Granulocytic Differentiation in NB4 Cell Line

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.722-729
    • /
    • 2006
  • Recently, we have reported that 3-hydrogenkwadaphnin (3-HK), a diterpene ester isolated from Dendrostellera lessertii (Thymealeaceae), is very effective against leukemia cell lines without any detectable effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK induces $G_1$ cell-cycle arrest, differentiation and apoptosis in APL NB4 cell line. Indeed, the drug between 24 to 96 h induced 7-65% growth inhibition of NB4 cells. Cell viability was also decreased by 2-55% between 24 to 96 h treatments with the drug, respectively. These effects of the drug were also dose-dependent. According to flow cytomtry results, 3-HK (15 nM) induced a significant G1-arrest up to 24 h which was consequently followed with appearance of sub-$G_1$ peak at 72 to 96 h. Hoechst 33258 staining and DNA fragmentation assays confirmed the occurrence of apoptosis among the treated cells. On the other hand, NBT reducing assay, Wright-Giemsa staining, phagocytic activity and expression of cell surface markers (CD11b and CD14) confirmed that the inhibition of proliferation is associated with differentiation especially toward macrophage-like morphology. Interestingly, 3-HK at 5 and 10 nM enhanced the effects of all-trans retinoic acid (ATRA) in NB4 cells. Based on these results, 3-HK might become an ideal candidate for treatment of APL patients pending full exploration of its biological functions.

Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches

  • Cho, Jin Hwa;Lee, Phil Young;Son, Woo-Chan;Chi, Seung-Wook;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.588-593
    • /
    • 2013
  • Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis.

Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken

  • Byun, Sung June;Ji, Mi-Ran;Jang, Ye-Jin;Hwang, A-In;Chung, Hee Kyoung;Kim, Jeom Sun;Kim, Kyung-Woon;Chung, Hak-Jae;Yang, Byoung-Chul;Jeon, Iksoo;Park, Jin-Ki;Yoo, Jae Gyu;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.404-409
    • /
    • 2013
  • Extracellular superoxide dismutase (EC-SOD) is a metallo-protein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white.

Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/NF-κB activation in poly(I:C)-stimulated astrocytes

  • An, Soo Yeon;Youn, Gi Soo;Kim, Hyejin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • In the central nervous system, viral infection can induce inflammation by up-regulating pro-inflammatory mediators that contribute to enhanced infiltration of immune cells into the central nervous areas. Celastrol is known to exert various regulatory functions, including anti-microbial activities. In this study, we investigated the regulatory effects and the mechanisms of action of celastrol against astrocytes activated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, as a model of pro-inflammatory mediated responses. Celastrol significantly inhibited poly(I:C)-induced expression of adhesion molecules, such as ICAM-1/VCAM-1, and chemokines, such as CCL2, CXCL8, and CXCL10, in CRT-MG human astroglioma cells. In addition, celastrol significantly suppressed poly(I:C)-induced activation of JNK MAPK and STAT1 signaling pathways. Furthermore, celastrol significantly suppressed poly(I:C)-induced activation of the $NF-{\kappa}B$ signaling pathway. These results suggest that celastrol may exert its regulatory activity by inhibiting poly(I:C)-induced expression of pro-inflammatory mediators by suppressing activation of JNK MAPK-STAT1/$NF-{\kappa}B$ in astrocytes.

Role of TolC in Vibrio vulnificus Virulence in Mice

  • Lin Mei-Wei;Lin Chen-Hsing;Tsai Shih-Feng;Hor Lien-I
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.59-62
    • /
    • 2002
  • The role of a TolC homologue in the virulence of Vibrio vulnificus, a marine bacterium causing serious wound infection and fulminant septicemia in persons with underlying conditions, has been studied. TolC, an outer membrane protein, has been implicated in a variety of bacterial functions including export of diverse molecules ranging from large proteins to antibiotics. A homologue of the tolC gene of V. cholerae, which has been shown to be required for bile resistance, cytotoxicity and colonization of this organism, was identified in the partially determined genome sequence of V. vulnificus. To determine the role of TolC in the virulence of V. vulnificus, a TolC-deficient (TD) mutant was isolated by in vivo allelic exchange. Compared with the parent strain, the TD mutant was more sensitive to bile, and much less virulent in mice challenged subcutaneously. This mutant was noncytotoxic to the HEp-2 cells, but its metalloprotease and cytolysin activities in the culture supernatant were comparable to the parent strain. In addition, the resistance of the TD mutant to human serum bactericidal activity as well as its growth in either human or murine blood was not affected. Collectively, our data suggest that TolC may be involved in colonization and/or spread of V. vulnificus to the blood stream, probably by secreting a cytotoxin other than the cytolysin.

  • PDF

Expression of Human Cytomegalovirus Immediate Early US3 Gene in Human Fibroblast Cells

  • Lee, Gyu-Cheol;Lee, Chong-Kyo;Ahn, Jin-Hyun;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2000
  • US3 gene is a member of the human cytomegalovirus (HCMV) immediate early gene. Although the precise functions of the US3 gene in HCMV replication and pathogenesis are not known, it has been reported to play a role in inhibiting major histocompatibility class I antigen presentation. For further knowledge of US3 gene expression, rabbit polyclonal antiserum of the US3 gene product was used for indirect immunofluorescence assay. In permissive human foreskin fibroblast (HFF) cells, US3 gene expression was detectable as crescent or half-moon shape in the perinuclear region at immediate early times after virus infection. HFF cells infected with mutant HCMV lacking US3 open reading frames were negative for US3 immunofluorescence assay. Double immunofluorescence assay using monoclonal antibody to gamma adaptin (specific for the Golgi complex) and rabbit anti-US3 antiserum revealed that US3 gene product could be localized to the Golgi complex. At later time after HCMV infection, US3 gene products were detected as globular aggregates in the cytosol. These aggregates were positive for gamma adaptin and stained with preimmune serum, suggesting a nonspecific reaction to the Golgi complex. Northern blot analysis revealed that transcription of US3 was observed only during immediate early times after virus infection (until 6 h postinfection). Therefore US3 gene expression appears to be confined to immediate early time and its gene products are localized to the Golgi complex as crescent shaped forms in the perinuclear cytoplasm.

  • PDF

Studies on KEM1 Gene Controlling Mitotic Cell Division in Yeast: Molecular Cloning of a High Copy Suppressor (ROK1) of kem1 (효모에서 세포분열을 조절하는 KEM1 유전자에 관한 연구: kemi의 High Copy Suppressor (ROK1) 클로닝)

  • Kim, Sang Hyeon;Kim, Jin Mi
    • Korean Journal of Microbiology
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 1992
  • The KEM1 gene is known to affect microtubule and spindle pole body function during the cell division cycle in Saccharomjyces cerevisiae. To identify new genes with functions similar or related to those of KEM1, we isolated a high copy suppressor gene (ROK1) that suppresses the kem1 mutation when cloned on a high copy number plasmid but not on a low copy number plasmid. Two clones which suppress both the benomyl hypersensitivity and the $Kar^{-}$ enhancing phenotype of kem1 null mutation were isolated and were shown to have a 9.0 kb identical insert by restriction endonuclease analysis. The restriction map constructed indicates that this suppressor gene, ROK1 is not KEM1. Subcloning experiments suggest that the functional region of ROK1 is at least 3.0kb in size.

  • PDF

Molecular Cloning of the Arginine Biosynthetic Genes from Corynebacterium glutamicum

  • Chun, Jae-Shick;Jung, Sam-Il;Ko, Soon-Young;Park, Mee-Young;Kim, Soo-Young;Lee, Heung-Shick;Cheon, Choong-Ill;Min, Kyung-Hee;Lee, Myeong-Sok
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.355-362
    • /
    • 1996
  • Complementation cloning of the argC, E, B, D, F, and G genes in Corynebacterium glutamicum was done by transforming the genomic DNA library into the corresponding arginine auxotrophs fo Escherichia coli. Recombinant plasmids containing 6.7 kb and 4.8kb fragments complementing the E. coli argB mutant were also able to complement the E. coli argC, E, A, D, and F mutants, indicating the clustered organization of the arginine biosynthetic genes within the cloned DNA fragments. The insert DNA fragments in the recombinant plasmids, named pRB1 AND pRB2, were physically mapped with several restriction enzymes. By further subcloning the entire DNA fragment containing the functions and by complementation analysis, we located the arg genes in the order of ACEBDF on the restriction map. We also determined the DNA nucleotide sequence of the fragment and report here the sequence of the argB gene. When compared to that with the mutant strain, higher enzyme activity of N-acetylglutamate kinase was detected in the extract of the mutant carrying the plasmid containing the putative argB gene, indicating that the plasmid contains a functional argB gene. Deduced amino acid sequence of the argB gene shows 45%, 38%, and 25% identity to that from Bacillus strearothermophilus, Bacillus substilus, and E. coli respectively. Our long term goal is genetically engineering C. glutamicum which produces more arginine than a wild type strain does.

  • PDF