References
- Arroyo DS, Soria JA, Gaviglio EA et al (2011) Toll-like receptors are key players in neurodegeneration. Int Immunopharmacol 11, 1415-1421 https://doi.org/10.1016/j.intimp.2011.05.006
- Zhang SY, Herman M, Ciancanelli MJ et al (2013) TLR3 immunity to infection in mice and humans. Curr Opin Immunol 25, 19-33 https://doi.org/10.1016/j.coi.2012.11.001
- Salmina AB, Komleva YK, Lopatina OL et al (2015) Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. Rev Neurosci 26, 143-159
- Farina C, Krumbholz M, Giese T et al (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159, 12-19 https://doi.org/10.1016/j.jneuroim.2004.09.009
- Bsibsi M, Persoon-Deen C, Verwer RW et al (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53, 688-695 https://doi.org/10.1002/glia.20328
- Park C, Lee S, Cho IH et al (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 53, 248-256 https://doi.org/10.1002/glia.20278
- Kim H, Yang E, Lee J et al (2008) Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes. Immunology 124, 480-488 https://doi.org/10.1111/j.1365-2567.2007.02799.x
- Gorina R, Santalucia T, Petegnief V et al (2009) Astrocytes are very sensitive to develop innate immune responses to lipid-carried short interfering RNA. Glia 57, 93-107 https://doi.org/10.1002/glia.20738
- Scumpia PO, Kelly KM, Reeves WH and Stevens BR (2005) Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 52, 153-162 https://doi.org/10.1002/glia.20234
- So EY, Kang MH and Kim BS (2006) Induction of chemokine and cytokine genes in astrocytes following infection with Theiler's murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia 53, 858-867 https://doi.org/10.1002/glia.20346
- Allison AC, Cacabelos R, Lombardi VR et al (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 25, 1341-1357 https://doi.org/10.1016/S0278-5846(01)00192-0
-
Ju SM, Youn GS, Cho YS et al (2015) Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-
${\kappa}B$ activation in RINm5F beta cells. BMB Rep 48, 172-177 https://doi.org/10.5483/BMBRep.2015.48.3.147 - Jung HW, Chung YS, Kim YS and Park YK (2007) Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NFkappaB in LPS-stimulated BV-2 microglial cells. Exp Mol Med 39, 715-721 https://doi.org/10.1038/emm.2007.78
- Nakamichi K, Kitani H, Takayama-Ito M et al (2010) Celastrol suppresses morphological and transcriptional responses in microglial cells upon stimulation with double-stranded RNA. Int J Neurosci 120, 252-257 https://doi.org/10.3109/00207451003615763
- Narayan V, Ravindra KC, Chiaro C et al (2011) Celastrol inhibits Tat-mediated human immunodeficiency virus (HIV) transcription and replication. J Mol Biol 410, 972-983 https://doi.org/10.1016/j.jmb.2011.04.013
- Youn GS, Kwon DJ, Ju SM et al (2014) Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes. Toxicol Appl Pharmacol 280, 42-52 https://doi.org/10.1016/j.taap.2014.07.010
- Imaizumi T, Sakashita N, Mushiga Y et al (2015) Desferrioxamine, an iron chelator, inhibits CXCL10 expression induced by polyinosinic-polycytidylic acid in U373MG human astrocytoma cells. Neurosci Res 94, 10-16 https://doi.org/10.1016/j.neures.2015.01.001
- Lee CS, Won C, Yoo H et al (2009) Inhibition of doublestranded RNA-induced inducible nitric oxide synthase expression by fraxinellone and sauchinone in murine microglia. Biol Pharm Bull 32, 1870-1874 https://doi.org/10.1248/bpb.32.1870
- Seo JW, Yang EJ, Kim SH and Choi IH (2015) An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines. BMB Rep 48, 696-701 https://doi.org/10.5483/BMBRep.2015.48.12.106
- Melchjorsen J, Sorensen LN and Paludan SR (2003) Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol 74, 331-343 https://doi.org/10.1189/jlb.1102577
- Ramesh G, MacLean AG and Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013, 480739
- Lee JH, Koo TH, Yoon H et al (2006) Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol 72, 1311-1321 https://doi.org/10.1016/j.bcp.2006.08.014
-
Kim H, Youn GS, An SY et al (2016) 2,3-Dimethoxy- 2'-hydroxychalcone ameliorates TNF-
${\alpha}$ -induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells. BMB Rep 49, 57-62 https://doi.org/10.5483/BMBRep.2016.49.1.141 - Youn GS, Ju SM, Choi SY and Park J (2015) HDAC6 mediates HIV-1 tat-induced proinflammatory responses by regulating MAPK-NF-kappaB/AP-1 pathways in astrocytes. Glia 63, 1953-1965 https://doi.org/10.1002/glia.22865
-
Kwon DJ, Bae YS, Ju SM et al (2014) Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-
${\kappa}B$ and JNK activation in RAW 264.7 macrophages. BMB Rep 47, 318-323 https://doi.org/10.5483/BMBRep.2014.47.6.200 - Seo WY, Youn GS, Choi SY and Park J (2015) Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes. BMB Rep 48, 495-500 https://doi.org/10.5483/BMBRep.2015.48.9.259
Cited by
- Hindsiipropane B alleviates HIV-1 Tat-induced inflammatory responses by suppressing HDAC6-NADPH oxidase-ROS axis in astrocytes vol.51, pp.8, 2018, https://doi.org/10.5483/BMBRep.2018.51.8.061
- in LPS-Stimulated RAW264.7 Macrophages vol.15, pp.9, 2018, https://doi.org/10.1002/cbdv.201800203
- Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model vol.51, pp.7, 2018, https://doi.org/10.5483/BMBRep.2018.51.7.101