• Title/Summary/Keyword: molecular evidence

Search Result 908, Processing Time 0.026 seconds

Morphological and molecular evidence for the recognition of Hypoglossum sabahense sp. nov. (Delesseriaceae, Rhodophyta) from Sabah, Malaysia

  • Wynne, Michael J.;Kamiya, Mitsunobu;West, John A.;Goer, Susan Loiseaux-de;Lim, Phaik-Eem;Sade, Ahemad;Russell, Hannah;Kupper, Frithjof C.
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.157-165
    • /
    • 2020
  • Culture isolates of the genus Hypoglossum (Delesseriaceae, Rhodophyta) were obtained and their development and morphological structure over many years were followed in the laboratory. Molecular data (rbcL, large subunit ribosomal DNA, and cytochrome c oxidase subunit I) were obtained from these strains and evidence presented to recognize the new species: Hypoglossum sabahense from Sabah, Malaysia. Because various aspects of morphology in culture specimens differ significantly from types based on field specimens we have to rely mainly on the molecular criteria in ascribing a new taxonomic name here. This also is complicated by the major lack of molecular phylogenetic evidence for Hypoglossum and other Delesseriaceae. The 'Germling Emergence Method' and 'serendipity' are proving valuable in discovering significant new taxa from laboratory cultures which otherwise might never be known.

Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex

  • Hwang, Eun Young;Jeong, Mi Suk;Park, So Young;Jang, Se Bok
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.488-493
    • /
    • 2014
  • Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED.

Molecular analyses and reproductive structure to verify the generic relationships of Hypnea and Calliblepharis (Cystocloniaceae, Gigartinales), with proposal of C. saidana comb. nov.

  • Yang, Mi Yeon;Kim, Myung Sook
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.87-100
    • /
    • 2017
  • The genera Hypnea and Calliblepharis of the family Cystocloniaceae are discriminated by their female reproductive structure, especially in the formation of carposporangia and gonimoblasts. Hypnea saidana, once classified based on obsolete evidence, has not been studied phylogenetically using molecular analysis and detailed reproductive structure though it shares many morphologic features with the genus Calliblepharis. To provide better understanding of generic relationship of H. saidana with Hypnea and Calliblepharis, we carried out molecular analyses using the nuclear-encoded small subunit ribosomal DNA (SSU) and chloroplast-encoded large subunit of the RuBisCO (rbcL), and exact morphological observations focusing on the reproductive structures of wild specimens. Our molecular phylogeny showed that H. saidana is closely related to Calliblepharis, but distinct from the clade of Hypnea. Female reproductive structure of H. saidana characterized by upwardly developing chains of carposporangia, central reticulum of cell, and gonimoblast filaments not connected to the pericarp provides definite evidence to assign the taxonomic position of this species to Calliblepharis. Based on our combined molecular and morphological analyses, we have proposed Calliblepharis saidana comb. nov., expanding the distribution of Calliblepharis habitat from the eastern Atlantic South Africa, the northern Indian Ocean, Australasia, and Brazil to the western Pacific Ocean.

Deep Impact: Molecular Gas Properties under Strong Ram Pressure Probed by High-Resolution Radio Interferometric Observations

  • Lee, Bumhyun;Chun, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.39.3-39.3
    • /
    • 2019
  • Ram pressure stripping due to the intracluster medium (ICM) is an important environmental process, which causes star formation quenching by effectively removing cold interstellar gas from galaxies in dense environments. The evidence of diffuse atomic gas stripping has been reported in several HI imaging studies. However, it is still under debate whether molecular gas (i.e., a more direct ingredient for star formation) can be also affected and/or stripped by ram pressure. The goal of this thesis is to understand the impact of ram pressure on the molecular gas content of cluster galaxies and hence star formation activity. To achieve this, we conducted a series of detailed studies on the molecular gas properties of three Virgo spiral galaxies with clear signs of active HI gas stripping (NGC 4330, NGC 4402, and NGC 4522) based on high-resolution CO data obtained from the Submillimeter Array (SMA) and Atacama Large Millimeter/submillimeter Array (ALMA). As a result, we find the evidence that the molecular gas disk also gets affected by ram pressure in similar ways as HI even well inside of the stellar disk. In addition, we detected extraplanar 13CO clumps in one of the sample, which is the first case ever reported in ram pressure stripped galaxies. By analyzing multi-wavelength data (e.g., Hα, UV, HI, and CO), we discuss detailed processes of how ram pressure affects star formation activities and hence evolution of cluster galaxies. We also discuss the origin of extraplanar 13CO, and how ram pressure can potentially contribute to the chemical evolution of the ICM.

  • PDF

Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae

  • Kwak, Geun-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.113-118
    • /
    • 2009
  • Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against $H_2O_2$-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.