• Title/Summary/Keyword: mold design

Search Result 1,177, Processing Time 0.027 seconds

A Study on the Development of Transfer Papers -Focused on Tile Design for Remodeling- (전사지 개발에 대한 연구 -리모델링을 위한 타일디자인을 중심으로-)

  • 모인순
    • Archives of design research
    • /
    • v.15 no.2
    • /
    • pp.213-222
    • /
    • 2002
  • A transfer paper, is needed in the third firing, is usually utilized for industrial ceramics in order to produce tablewares or promoting products. Products may have the same form, however; the price might be different by what kinds of design have transferred. We need to fully understand these methods in order to create high value and quality. Remodeling, the so-called second architecture, results from social Needs for renovation of structures and changing functions. Tile satisfying the need for a custom-made design which fits the features of a space. Most importantly, the remodeler must make an individual design ordered for the customer with an emphasis on economy and time efficiency. Tiles currently in the market are mass-produced using an automated system with a high-priced mold. It is difficult to find tiles of distinct design that are made in a small quantity. We need to develop a method for making various kinds of tile designs that would be marketed for the remodeling industry. In this study, after designing a certain wall with the tiffs in the space, 1 will talk about developing a method to make transfer paper to produce individual tiles for the space. 1 hope that the functional and aesthetic effect on remodeling will gain in popularity, and that we will foster a new demand for tiles in harmony with the other materials mentioned in this study.

  • PDF

Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting (고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작)

  • Yu, Jong-Su;Yu, Semin;Kwak, Sun-Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.

Development of New Micro Pattern Fabrication Process by U sing Isostatic Pressing (정수압을 이용한 미세 패턴 전사 신공정 개발)

  • Seol, J.W.;Joo, B.Y.;Rhim, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.267-270
    • /
    • 2009
  • In the present investigation, we are newly developing a new forming process which can fabricate micro patterns on large-area polymeric substrates for high speed mass production. The key idea of the new process is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature ($T_g$) of the polymeric substrates. The new process is thought to be promising micro-pattern fabrication technique in three aspects; firstly, isostatic pressing ensures the uniform micro-pattern replicating condition regardless of the substrate area. Secondly, the control of forming condition such as temperature and pressure can realize well-defined process condition exploited in the conventional hot embossing research field. Thirdly, multiple substrates can be patterned at the same time. A prototype forming machine for the new process was developed with the design consideration realizing the present idea. With a developed machine, micro prismatic array patterns with 50 um in size were successfully made on the $380{\times}300{\times}6\;mm$ PMMA plate.

  • PDF

Wear Behaviours and Material Characteristics of TiN Coatings (CAE에 의한 TiN 증착층의 특성 및 마모거동에 관한 연구)

  • Song, Gun;Yoon, Eui-Sung;Ahn, Hyo-Sok
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.11a
    • /
    • pp.38-43
    • /
    • 1991
  • 일반 금속재료로써 표면층이 최적의 tribology적 성질을 갖도록 하기에는 한계점이 있으며, 이러한 문제점을 해결하기 위한 수단으로 bulk material에 그것이 갖지 못하는 tribology적으로 우수한 성질을 그 표면층에 부여하는 기술로 여러가지 방법이 개발되어 왔으며 그 중 대표적인 것이 표면코팅기술이다. 표면 코팅기술중에서도 세라믹코팅기술이 최근에 들어 최고의 관심사가 되고 있는데 이는 세라믹재의 특징이 고강도, 고경도, 내산화성 및 내화학적 성질 등 기계 요소가 받는 가혹한 조건에 최적의 내성을 지니기 때문이다. 특히 세라믹재가 갖는 고강도, 고경도의 성질은 마찰, 맘모 특성의 향상을 극대화시킬 수 있기 때문에 마찰, 마모가 문제시되는 기계요소에의 적용전망은 매우 밝으며, 특히 취약한 환경 즉, nuclear industry와 우주산업 등과 같이 재래의 윤활기술이 제대로 적용될 수 없는 분야에 세라믹코팅기술의 응용은 절대적으로 필요하다. 현재 세라믹 재료의 마찰과 마모특성에 대한 연구는 전 세계적으로 비교적 활발히 진행되고 있으나 세라믹 코팅으로서의 세라믹재의 마찰, 마모특성에 대한 연구는 아직 초보단계에 있다고 할 수 있다. 따라서 본 연구에서는 현재 응용범위를 넓혀가고 있는 TiN을 cathodic arc evporation(CAE)-기술을 이요하여 모재에 코팅을 하여 그 증착층의 재료적 특성 및 마모특성에 대하여 고찰하였다.

  • PDF

A Study on D.D.I. Load for Forming of the CNG Storage Vessel (CNG 저장용기의 성형을 위한 D.D.I. 하중에 관한 연구)

  • Lee, Hyun Woo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.629-637
    • /
    • 2013
  • In this study, a theoretical analysis method was suggested for predicting forming loads of continuous deep drawing and ironing processes (D.D.I. processes) by considering back tension and continuity equation, and FEA for D.D.I. processes was performed. Dimensions of a punch and a mold on the basis of design rules for a CNG storage vessel were applied for the analysis. To verify the suggested theoretical analysis, the results of theoretical analysis were compared with both those of FEA and experiments of previous studies. As the result of analysis, the values and tendencies of the loads predicted by the theoretical analysis were in agreement with those of FEA and the experiments. So, it is considered that the analysis suggested has reliability for predicting the forming loads of the continuous processes(deep drawing+ironing(1)+ironing(2)).

Fabrication of Plasmon Subwavelength Nanostructures for Nanoimprinting

  • Cho, Eun-Byurl;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.247-247
    • /
    • 2012
  • Plasmon subwavelength nanostructures enable the structurally modulated color due to the resonance conditions for the specific wavelength range of light with the nanoscale hole arrays on a metal layer. While the unique properties offered from a single layer of metal may open up the potential applications of integrated devices to displays and sensors, fabrication requirements in nanoscale, typically on the order of or smaller than the wavelength of light in a corresponding medium can limit the cost-effective implementation of the plasmonic nanostructures. Simpler nanoscale replication technologies based on the soft lithography or roll-to-roll nanoimprinting can introduce economically feasible manufacturing process for these devices. Such replication requires an optimal design of a master template to produce a stamp that can be applied for a roll-to-roll nanoimprinting. In this paper, a master mold with subwavelength nanostructures is fabricated and optimized using focused ion beam for the applications to nanoimprinting process. Au thin film layer is deposited by sputtering on a glass that serves as a dielectric substrate. Focused ion beam milling (FIB, JEOL JIB-4601F) is used to fabricate surface plasmon subwavelength nanostructures made of periodic hole arrays. The light spectrum of the fabricated nanostructures is characterized by using UV-Vis-NIR spectrophotometer (Agilent, Cary 5000) and the surface morphology is measured by using atomic force microscope (AFM, Park System XE-100) and scanning electron microscope (SEM, JEOL JSM-7100F). Relationship between the parameters of the hole arrays and the corresponding spectral characteristics and their potential applications are also discussed.

  • PDF

Development and Evaluation of Gasket for Polymer Electrolyte Membrane Fuel Cell Stacks (고분자 전해질 연료전지 가스켓 설계 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • The design and fabrication of a metallic bipolar plate-gasket assembly for polymer electrolyte fuel cells (PEMFCs) is defined. This bipolar plate-gasket assembly was prepared by inserting a previously prepared bipolar plate in the specially designed gasket mold. For this aim, a proprietary fluoro-silicone based rubber was injected directly into the bipolar plate borders. Gaskets obtained like this showed the chemically / physically stable and the good sealibilty in typically operating PEM fuel cell conditions. And also, this bipolar plate-gasket assembly shows lots of advantages with respect to traditional PEMFCs stack assembling systems: useful application to automative stacking due to easy handling, reduced fabrication time, possibility of quality control and failed elements substitution. This bipolar plate-gasket assembly was evaluated in the short fuel cell stack and met the leakage requirement for normal operation both in short-term and in long-term operation. Especially, it was confirmed that this gasket could be applied successfully even in the high pressure FEM fuel cell systems(over 2.0 bar in absolute pressure).

  • PDF

Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending

  • Lee, Kuo-Long;Chang, Kao-Hua;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.387-404
    • /
    • 2016
  • In this paper, the response and failure of sharp-notched 6061-T6 aluminum alloy circular tubes with five different notch depths of 0.4, 0.8, 1.2, 1.6 and 2.0 mm subjected to cyclic bending were experimentally and theoretically investigated. The experimental moment-curvature relationship exhibits an almost steady loop from the beginning of the first cycle. And, the notch depth has almost no influence on its relationship. However, the ovalization-curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. In addition, a higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. Focusing on the aforementioned relationships, the finite element software ANSYS was used to continue the related theoretical simulation. Furthermore, the five groups of tubes tested have different notch depths, from which five unparallel straight lines can be observed from the relationship between the controlled curvature and the number of cycles required to produce failure in the log-log scale. Finally, a failure model was proposed to simulate the aforementioned relationship. Through comparison with the experimental data, the proposed model can properly simulate the experimental data.

The Quasi 3-D Flow Simulation in injection Molding Using Virtual Pressure Reflection (가상 반사압력을 이용한 사출성형의 준3차원 유동해석)

  • 이호상;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1294-1306
    • /
    • 1992
  • In order to determine the design parameters and processing conditions in injection molding, it is very important to establish the theoretical model with scientific base. In this study, a two dimensional model has been developed for the purpose and flow simulations of filling process are carried out. The moving boundary transient flow problem along the flat plane is solved efficiently by the Iterative Boundary Pressure Reflection Method which rearranges the impinged melt front along the physical boundary in scientific manner. The two dimensional modeling of filling process is applied to two examples : a three dimensional cover with two screw holes and a two-gated flat cavity with unbalanced runners. The numerical results show good agreement with experimental short shots, especially for the weldline locations and the pressure traces at various locations. They also provide the temperature, clamp force, and velocity field in the mold at different times during filling of cavity.

Study of Injection Molding Process of Shift Lever Using Injection Molding Analysis (사출성형해석을 통한 자동차 레버쉬프트의 사출공정에 관한 연구)

  • Park, Chul-Woo;Lee, Boo-Youn;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.7-13
    • /
    • 2015
  • The production processes were reviewed through the injection analysis of the shift lever as a core component of an auto lever installed in the automatic transmission of cars. The injection analysis was carried out for the shift lever and rod among the components in a shift lever module. The shift lever and rod are designed for injection molding with the insertion of a tube, a pin cable plate, and a steel rod for securing the strength of the product. The charging time, failure of injection molding, weld line, air trap, and deformation were reviewed according to this insert. Analyses on various gate positions were carried out for reviewing the cultivation and deformation of fiber around major components, such as the generation section of manipulation feeling and assembly section, so that optimal gate conditions might be reviewed and reflected in the mold design. Finally, we plan to compare the analysis results with the production of trial products.