• Title/Summary/Keyword: mold design

Search Result 1,191, Processing Time 0.045 seconds

A study on reduction of clamping force for plastic back cover of large TV (대형 TV의 플라스틱 후면 커버 성형시의 형체력 절감 방안 연구)

  • Song, Jae-Choon;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.36-41
    • /
    • 2019
  • A large plastic molding requires an injection molding with a large clamping force. However, it could not be prepared in the manufacturing at any time. In order to solve the problem, the injection molding analysis study was conducted on the back cover of 55 inch LED TV. The study compared the case of applying the existing flow system such as hot runner, the improvement of the hot runner lay-out and the precise control of the gate operation time, From the results of using the improved flow system, it was found that the welding and the clamping force were considerably improved as compared with before the improvement. In particular, the clamping force was reduced by 50% compared with before the improvement.

Implementation of an simulation-based digital twin for the plastic blow molding process (플라스틱 블로우몰딩 공정의 해석기반 디지털 트윈 구현)

  • Seok-Kwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Blow molding is a manufacturing process in which thermoplastic preforms are preheated and then pneumatically expanded within a mold to produce hollow products of various shapes. The two-step process, a type of blow molding method, requires the output of multiple infrared lamps to be adjusted individually, so the process of finding initial conditions hinders productivity. In this study, digital twin technology was applied to solve this problem. A blow molding simulation technique was established and simulation-based metadata was generated. A response surface ROM (Reduced Order Model) was built using the generated metadata. Then, a dynamic ROM was constructed using the results of 3D heat transfer analysis. Through this, users can quickly check the product wall thickness uniformity according to changes in the control value of the heating lamp for products of various shapes, and at the same time, check the temperature distribution of the preform in real time.

A study on insert molding application to secondary battery cap assembly (이차전지 캡 어셈블리 인서트 몰딩 적용에 관한 연구)

  • Seung-Min Woo;Geum-Seok Yoon
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.54-63
    • /
    • 2024
  • This study applied the insert molding technology which is a metal and resin joining method, to secondary battery prismatic cap assembly component and investigated the improvement comparing with standard PHEV2 Type of prismatic battery under the goal of enhancing the global market competitiveness by reducing the number of cap assembly sub-component and simplifying its manufacturing processes. Insert molding replaced the rivet terminal which is composed of 6 parts to which led significant decreasing of product cost, weight and resistance and increasing tensile strength. The angle of current collector to cap plate is a key of leakage defect which is determined by temperature of product and mold, injection temperature, pressure and time and these data can be used for bigger size of insert cap assembly as the demand of high capacity battery is getting high

Finite Element Simulation of Hot Forging Process for Tank Transmission Ring Component (전차 변속기 링 형상 부품의 열간 단조 공정 성형 해석)

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1327-1333
    • /
    • 2024
  • In this study, the formability was predicted using a finite element method-based forming simulation program to manufacture ring-shaped parts with multiple rectangular grooves through a hot forging process. The hot forging process was designed into four processes. In the first and second processes, the disk-shaped raw material was transformed into the shape of a bowl. In the third process, the inner lower part of the bowl was sheared to form a ring shape. In the fourth process, the outer surface of the upper part of the ring was partially sheared to create multiple rectangular grooves. Since the lower mold for the first and second processes is the same, mold costs can be reduced. In the third process, burrs are expected to occur on the shear surface, so burr removal work is required in the actual process. The fourth process requires more than one forging operation because the rectangular groove cannot be made uniformly in one operation.

CONFUTER-AIDED CASTING DESIGN FOR IMPLANT TITANIUM SUPERSTRUCTURES (컴퓨터 시뮬레이션을 이용한 임플란트 상부 티타늄 구조물의 주조방안)

  • Oh Se-Wook;Lee Ho-Yong;Lee Keun-Woo;Shim Jun-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.421-439
    • /
    • 2003
  • Statement of problem : It is difficult to obtain a good titanium casting body using the traditional sprue design because of high melting point of Ti, and the low fluidity and high reactivity of molten Ti. Purpose : A new sprue design for titanium casting bodies needs more trial and error. In order to decrease the number of trial and error, computer simulation(MAGMASOFT, Magmasoft Giessereitechnologie GmbH, Achen, Germany) was used to optimize sprue design in U-shaped implant superstructures. Material and method : Five kinds of sprue were examined for the design of the sprue former for titanium casting: Sprue design A(sprue length 4 mm, rectangular shape, 4 sprues), Sprue design B(sprue length 4 mm. round shape. radius 2 mm, 7 sprues), Sprue design C (sprue length 2 mm, round shape, radius 2 mm, 7 sprues). Sprue design D (sprue length 2 mm, cone shape, large radius 3mm. small radius 2mm, 7 sprues), and Sprue design E( sprue length 2 mm. one unit channel shape). Sprue design F(sprue length 2mm, one unit channel shape) was also examined for the design of the customized sprue former in the Biotan system(Schutz Dental Gmbh, Germany). The casting bodies were taken in Sprue design A, Sprue design D, Sprue design E, and Sprue design F in the Biotan casting system. The numerically predicted defects were compared with the experimental dental castings by the radiographic and sectional view observations. Results : 1. According to the result of computer simulation, turbulence during mold filling was decreased in the sequence of Sprue design F, Sprue design E, Sprue design D, Sprue design C, Sprue design B, and Sprue design A. 2. The calculated solidification time contours indicate that hot spot was moved from the casting body to the sprue button in the sequence of Sprue design A, Sprue design B, Sprue design C, Sprue design D, and Sprue design E. The filling pattern of Sprue design F was similar to that of Sprue design E. 3 The predicted filling pattern shows that less turbulence was found in the customized sprue former than in the standard sprue former. 4. According to the results of the radiographic and cross sectional observations, casting defects less than 1mm were found at the center of a casting body with Sprue design E and Sprue design F. However, larger casting defects of 4mm were found in a casting with Sprue design A. 5. The predicted casting porosity was similar to that of the real casting. Conclusion : One unit channel-type and customized sprue former can be recommended. Further research and developement of various sprue designs using computer simulation in necessary to optimize casting design, in order to reduce the formation of casting defects in implant titanuim super-structures.

A Study on the Ontology-based Design Process Modeling (온톨로지 기반 설계 프로세스 모델링에 관한 연구)

  • Kim J.K.;Kang M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.632-636
    • /
    • 2005
  • Design process model represents how a design project proceeds. It encompasses the individual activities of design, their precedence relationships, and the relevant information related to each activity. In contrast to the conventional visual representation methods, ontology-based process model is machine-readable, and therefore it can be implemented in a software system without repeating the whole steps of coding, compiling and link. This paper proposes a framework for design process ontology that defines the relevant objects and attributes in the design process as well as the relationships between them. An example for injection mold design process is shown to explain the substance of the design process model.

  • PDF

Optimization of blank geometry for the stamping process of B-pillar using design of experiments (실험 계획법을 사용한 B-Pillar 성형공정에서 블랭크 형상 최적화)

  • Youn, Hyung-Won;Choi, Yong-seok;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.17-22
    • /
    • 2021
  • The shape of the blank greatly affects the formability and quality of the product after the stamping process. In this study, the geometry of the B-Pillar blank in the stamping process was optimized using design of experiments. The geometry of the blank for the B-pillar was simplified with the two length values and two radius values. The effects of design variables were studied through the Design of experiments. The stamping process of the B-pillar was predicted with the Finite Element Analysis (FEA). The optimized blank geometry was obtained. It results in the reduced maximum equivalent plastic strain. The local necking and the wrinkling did not occurred with the optimized blank geometry.

Optimal design of formed tool for die of rubber seals using design of experiments (실험계획법에 의한 러버실 금형가공을 위한 총형공구의 최적설계)

  • Li Lihai;Lim P.;Lee H.K.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.694-697
    • /
    • 2005
  • The design of experiments are used for optimal design of formed tools to machine automobile bearing rubber seal die, which is classified into the high precision rubber mold. The clearance angle, rake angle and the length cutting edge are considered as the factors. The cutting force is selected to be a characteristic value and compared with the mean tool wear and life by repeated experiments. The design of the experiment is based on the repeated one-way factorial design, which finds the significance of the factors and the best level to predict the tool life by using ANOVA and regression.

  • PDF

Development of an Expert System for Multi-component Injection Molding (다재 사출성형 전문가 시스템 개발)

  • 강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.213-217
    • /
    • 1999
  • An expert system is developed for rational and efficient design of multi-component injection molding which is a fairly new manufacturing technique to produce plastic parts by injecting two or more materials sequentially using multiple injection units in a single machine into a single rotary mold. The knowledge base used in the present design system is primarily composed of two parts ; knowledge from domain expert and knowledge from CAE analysis. The present expert system has hour main modules ; general design guidelines for injection molding specific guidelines for multi-component injection molding redesign guidelines from the result of the CAE analysis and finally troubleshooting for multi-component injection molding. To show the validity of the present design methodology two shop floor design problems were tested ; design and fabrication of timing belt cover and power window's assist knob by using multi-component injection molding.

  • PDF

A Knowledge-based Design System for Injection Molding

  • Huh, Yong-Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.11-17
    • /
    • 2001
  • The design and manufacture of injection molded polymeric parts with desired properties is a costly process dominated by empiricism, including the repeated modification of actual tooling. This paper presents an expert design evaluation system which can predict the mechanical performance of a molded product and diagnose the design before the actual mold is machined. The knowledge-based system synergistically combines a rule-based expert system with CAE programs. Heuristic knowledge of injection molding is formalized as rules of an expert consultation system. The expert system interprets the analytical results of the process simulation, predicts the performance, evaluates the design and generates recommendations for optimal design alternatives.

  • PDF