• Title/Summary/Keyword: mold design

Search Result 1,191, Processing Time 0.029 seconds

Optimization of Valve Gates Locations Using Automated Runner System Modeling and Metamodels (유동 안내부 모델링 자동화 및 근사모델을 이용한 자동차용 도어트림의 밸브 게이트 위치 최적화)

  • Joe, Yong-Su;Park, Chang-Hyun;Pyo, Byung-Gi;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2014
  • Injection pressure is one of factors that influence part quality. In this paper, injection pressure was minimized by optimizing valve gate locations. In order to perform design optimization, MAPS-3DTM (Mold Analysis and Plastic Solution-3D) was used for injection mold analysis and PIAnOTM (Process Integration, Automation and Optimization) was used as process integration and design optimization. Also we adapted meta models based on design of experiments for efficiency. By using introduced methodology, we were able to obtain a result so that maximum injection pressure reduced by 28% compared to the initial design. And the validity of the proposed method could also be demonstrated.

Characteristics of Growth and Photosynthesis of Peucedanum japonicum by Shading and Leaf Mold Treatment in Forest Farming (임간재배 시 차광과 부엽토 처리에 따른 갯기름나물의 생장 및 광합성 특성)

  • Song, Ki Seon;Jeon, Kwon Seok;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.78-85
    • /
    • 2016
  • This study was carried out to determine the effects of shading and leaf mold treatment on growth characteristics and photosynthesis responses of Peucedanum japonicum in forest farming. It is very valuable as a sort of health food, so that the demand for the vegetable has increased recently. The experiment can not only increase the yield but also contribute to the development of eco-friendly technology for high-quality P. japonicum. It was performed by shading treatments (full sunlight, 35%, 50% and 75% shading) and leaf mold treatments (control, pine tree and chestnut tree). Height, stem diameter, root collar diameter, number of stem and dry weight were the highest in chestnut-leaf mold under full sunlight. Leaf area, leaf length and leaf width were the highest in chestnut-leaf mold under 35% shading. Photosynthetic rate, conductance to $H_2O$, transpiration rate and water use efficiency were the highest in chestnut-leaf mold under full sunlight. Specially, photosynthetic rate was higher under chestnut-leaf mold in all shading treatment, and getting lower in the higher shading rate. As a result of surveying the whole experiment, it is concluded that P. japonicum grows nicely by maintaining 35% shading under chestnutleaf mold in forest farming. Thus, it is the most effective way to increase the yield for high-quality P. japonicum with eco-friendly technology.

Automated design module generation system for parametric design (PARAMETRIC DESIGN을 위한 자동설계모듈 생성)

  • Lee, Seok-Hee;Bahn, Kab-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.236-247
    • /
    • 1993
  • An davanced method for the automatic generation of parametric models in computer- aided design systems is required for most of two-dimensional model which is represented as a set of geometric elements, and constraining scheme formulas. The development system uses geometric constraints and support of topology parameters from feature recognition and grouping the design entities into optimal ones from pre-designed drawings. The aim of this paper is to present guidelines for the application and development of parametric design modules for the standard parts in mechanical system, the basic constitutional part of mold base, and other 2D features.

  • PDF

The Development of IMG Integral Foaming Crashpad (IMG 발포일체성형 크래시패드 개발)

  • Choi, Sung-Sik;Kong, Byung-Seok;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.607-612
    • /
    • 2019
  • The softness of the crashpad part is one of the important factors which affect the interior perceived quality of the vehicle interior. And while improving the softness of the crashpad part, every effort to lower the production cost has been going on. The PU foaming process for the crashpad part depends on the understanding of a lot of processes, tools and material properties. Therefore, to achieve the requirement of the customer for the interior part's visual quality, the integrated design techniques are investigated to correlate the processes, tool design, material design and the computer aided analysis. In this paper, IMG (In Mold Grain) designed concept is firstly developed to integrate the skin preforming, plastic injection molding of the substrate and the foaming process in a tool within reduced processes. Through the application of this technology, softness of crashpad is improved by 40% compared to the conventional vacuum molding method, and the existing process is reduced by 50% by integrating the injection process and the manufacturing process. And by integrating the injection mold and the skin mold and removing the foaming mold, the number of molds are reduced from 3 to 1, resulting in 20% reduction in the cost of applying a medium-sized passenger car.

Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures (금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화)

  • Oh, Seung-Hwan;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.42 no.5
    • /
    • pp.273-281
    • /
    • 2022
  • In order to understand the solidification behavior and microstructural evolution of the Al-Cu-Si ternary eutectic alloy system, changes of the microstructure of the Al-Cu-Si ternary eutectic alloy with different cooling rates were investigated. When the mold preheating temperature is 500℃, primary Si and Al2Cu dendrites are observed, with (α-Al+Al2Cu) binary eutectic and needle-shaped Si subsequently observed. In addition, even when the mold preheating temperature is 300℃, primary Si and Al2Cu dendrites can be observed, and both (α-Al+Al2Cu+Si) areas observed and areas not observed earlier appear. When the mold preheating temperature is 150℃, bimodal structures of the binary eutectic (α-Al+Al2Cu) and ternary eutectic (α-Al+Al2Cu+Si) are observed. When the preheating temperature of the mold is changed to 500℃, 300℃, and 150℃, the greatest change is in the Si phase, and upon reaching the critical cooling rate, the ternary eutectic of (α-Al+Al2Cu+Si) forms. If the growth of the Si phase is suppressed upon the formation of (α-Al+Al2Cu+Si), the growth of both Al and Cu is also suppressed by a cooperative growth mechanism. As a result of analyzing the Al-27wt%Cu-5wt%Si ternary eutectic alloy with a different alloy design simulation programs, it was confirmed that different results arose depending on the program. A computer simulation of the alloy design is a useful tool to reduce the trial and error process in alloy design, but this effort must be accompanied by a task that increases reliability and allows a comparison to microstructural results derived through actual casting.

A Study on Improvement of Surface Qualify in Injection Molded Parts (사출금형제품의 표면향상에 관한 연구)

  • 조재성
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.3
    • /
    • pp.113-120
    • /
    • 2002
  • Injection molded plastic parts have many surface defects. These include a weld line, sink mark, flow mark, gloss, shading, scratching etc. Because these surface faults are not aesthetically acceptable, plastic parts are produced through painting or texturing. The purpose of this paper is to develop paintless molded parts using a flow control method. Computer aided injection mold filling simulations were used in order to minimize the number of defects from injection molding. Based on the numerical results, FR(Flame Retardant) HIPS was developed and the guidelines for part design, mold design, and the processing conditions were established. The effects of cost savings, improvements in productivity, and recycling were considered by reducing the number of surface faults and eliminating the painting process.

The Material Flow according to Die Geometry in Can-Flange Forming (Can-Flange 성형에서 금형형상에 따른 소재 유동특성)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.42-47
    • /
    • 2012
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. We have discussed the influences of tool geometry such as punch nose angle, relative gap height, die corner radius on material flow and surface expansion into can and flange region. To analyse the process, numerical simulations by the FEM and experiment by physical modeling using Al alloy as a model material have been performed. Based on the results, the influence of fixed parameters on the distribution of divided material flow and surface expansion are obtained.

  • PDF

A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm (런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구)

  • 박균명;김청균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

사출성형의 게이트 위치 최적화

  • Lim, Won-Gil;Kim, Young-Il;Seol, Kwon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.787-791
    • /
    • 1996
  • In injection molding, location of gates have great influence on the quality of plastic parts. Usually, they are located by releated trial and errors of experienced mold designers. In this topic we will present the numerical algorithm for finding the optimal gate locations. Optimization algorithm is devided into two stages. In the first stage, candidated optimal gate locations can be found by geometry of part only; whereas in the next step, more acculate gate locations are selected byiterative computation with optimization part and analysis part. So from the following study, we suggested the modified flow-volume method, which will define the optimal gate locations in injection mold design.

  • PDF