• Title/Summary/Keyword: mold design

Search Result 1,177, Processing Time 0.027 seconds

Design of Magnetic Circuit for Orientation of a Plastic Magnet (플라스틱 자석 배향용 자기회로 설계)

  • Kim, Chang-Eob;Kim, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.183-185
    • /
    • 1998
  • In this paper, a magnetic circuit of plastic magnet roller for laser printer is presented. The magnetization direction of plastic magnet is decided by the flux distribution of injection mold during the manufacturing process. The injection mold is designed and analysed to fit the design specification. The experiment showed that the flux distribution of a magnet is good agreement of the given specification.

  • PDF

A Study on Scarf Design Development with a Combination of Traditional Korean Rice Cake Pattern and Jogakbo Patchwork (전통 떡살문양과 조각보를 조합한 스카프디자인 개발)

  • Kim, Sun-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.50 no.1
    • /
    • pp.29-39
    • /
    • 2012
  • The purpose of this research is to suggest a scarf design which reflects the traditional culture native to Korea by making use of the combined pattern of jokgakbo patchwork and ddeoksal(rice cake). For research methodology, the computer design programs of Adobe Illustrator CS3 and Adobe Photoshop CS3 were used along with the related literature. For the combined sets of motif pattern, the following were consider: first, a combination of jogakbo in square shape and chrysanthemum in a rice cake mold; second, a combination of radius jogakbo and geometrical pattern; third, a combination of vertical and horizontal forms of jogakbo and rice cake pattern; fourth, a combination of yeouijumunbo and butterfly pattern in rice cake mold. For the scarf design with these applications, technical skills such as repeat, rotation, symmetry, free setup, and distortion were used for the combination motif. In terms of the shape of the design, there are two, square and lengthwise tetragons.

Multi-objective Optimization of an Injection Mold Cooling Circuit for Uniform Cooling (사출금형의 균일 냉각을 위한 냉각회로의 다중목적함수 최적설계)

  • Park, Chang-Hyun;Park, Jung-Min;Choi, Jae-Hyuk;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.124-130
    • /
    • 2012
  • An injection mold cooling circuit for an automotive front bumper was optimally designed in order to simultaneously minimize the average of the standard deviations of the temperature and the difference in mean temperatures of the upper and lower molds for uniform cooling. The temperature distribution for a specified design was evaluated by Moldflow Insight 2010, a commercial injection molding analysis tool. For efficient design, PIAnO (Process Integration, Automation and Optimization), a commercial PIDO tool, was used to integrate and automate injection molding analysis procedure. The weighted-sum method was used to handle the multi-objective optimization problem and PQRSM, a function-based sequential approximate optimizer equipped in PIAnO, to handle numerically noisy responses with respect to the variation of design variables. The optimal average of the standard deviations and difference in mean temperatures were found to be reduced by 9.2% and 56.52%, respectively, compared to the initial ones.

A study on the molding of dome shaped plastic parts embedded with electronic circuits (전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes (다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발)

  • Yoon, Seung Tak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.

A Study Shrinkage Analysis of Injection mold using Regression Analysis (회귀분석법을 이용한 사출금형의 수축률 분석에 관한 연구)

  • RYU, M.R.;BAE, H.E.;PARK, J.H.;PARK, J.S.;PARK, S.H.;LEE, D.H.;LEE, S.B.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.113-118
    • /
    • 2011
  • It is not easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by using the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 87% and regression equation of average shrinkage is made by regression analysis.

A study on design of non-pneumatic small industrial wheel using FEM and vibration tests (비공기압 방식 소형 산업용 바퀴의 설계를 위한 수치해석과 진동실험에 관한 연구)

  • Hong, Pil-Gi;Son, Chang-Woo;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.48-54
    • /
    • 2018
  • This paper presents a numerical study for the development of a low-noise low-vibration industrial wheel for non-pneumatic wheel to significantly reduce vibration and noise. For this, design, injection molding and performance testing were performed. Various geometric shapes and materials were taken into account. For numerical analysis, ANSYS, LS-Dyna, and ABAQUS were used to predict the behavior of the wheel under different loadings based on various design changes. Based on this, 4 prototypes were fabricated by changing the design of wheels and molds, and various vibration and noise tests were carried out. A vibration tester was developed and tested to perform the vibration noise test considering durability. A prototype and test of the final wheel was performed. In the case of the vibration test, the vibration levels were 81.16dB and 80.66dB, which were below the target 90dB. Noise levels were 53.20 dB and 52.55 dB below the target 65dB. In the case of the impact resistance test, it was confirmed that there was no change in appearance after impact. The product weight was measured to be 174g compared to the target of 190g.

Analysis of friction stir welding characteristics of aluminum alloy using machining center (머시닝센터를 활용한 알루미늄합금의 마찰교반용접 특성 분석)

  • Seung, Young-Chun;Park, Kyoung-Do;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.46-51
    • /
    • 2020
  • The purpose of this study was to analyze the change in tensile strength characteristics of the weld when the welding speed and rotational speed of the tool, which are representative variables of the friction stir welding process. The equipment used in the experiment was Machining Center No. 5. The material used in the experiment is an AA6061-T6 alloy, and a rolled plate with a thickness of 2mm was used. Two experimental variables were selected, the welding speed of the tool and the rotational speed of the tool. The experimental conditions were selected in the range in which a healthy weld could be obtained through a preliminary experiment. The welding speed of the tool was increased to 100mm/min, 200mm/min, and 300mm/min, and the rotational speed of the tool was increased to 1000rpm, 2000rpm, and 3000rpm. As a result of the experiment, the tensile strength increased as the rotational speed of the tool changed at each tool welding speed. In addition, as the welding speed of the tool increased, the tensile strength of the weld was increased. The condition with the highest tensile strength of the weld was found to be a tool feed speed of 300 mm/min and a tool rotation speed of 3000rpm.