• 제목/요약/키워드: moisture stability

검색결과 505건 처리시간 0.028초

Wood Quality and Growth of Quercus rubra in Korea - Water absorption, Hygroscopic property - (루브라참나무의 생장과 재질 - 흡수량, 흡습성 -)

  • Park, Kang-Sik;Kim, Byung-Ro
    • Journal of the Korea Furniture Society
    • /
    • 제27권2호
    • /
    • pp.91-95
    • /
    • 2016
  • This study was conducted to investigate the relationship between water absorption (or hygroscopic property) and growth rate of rubra oak (Quercus rubra) from 5 different origins of seed (Carleton, Simcoe, Chatham, Bancroft, Unknown). Water absorption at cross section of Quercus rubra was $0.43{\sim}0.92g/cm^2$ and the property was not related with growth rate. Overall equilibrium moisture content of rubra oak were 11.35~11.56% and 15.15~15.83% at $40^{\circ}C$ with 75% and 90% relative humidities, respectively. There was no relationship between growth rate and moisture content(hygroscopy) in rubra oak. Based on the results, Rubra oak can be classified as a low hygroscopic wood grade, and thus might be a good raw material for furniture productions owing to its superior dimensional stability.

Time Dependent Extension and Failure Analysis of Structural Adhesive Assemblies Under Static Load Conditions

  • Young, Patrick H.;Miller, Zachary K.;Gwasdacus, Jeffrey M.
    • Journal of Adhesion and Interface
    • /
    • 제21권1호
    • /
    • pp.6-13
    • /
    • 2020
  • The objective of the current study is to characterize the long-term stability and efficacy of a structural adhesive assembly under static load. An apparatus was designed to be used in the Instron tensile test machine that would allow for real time modeling of the failure characteristics of an assembly utilizing a moisture- cure adhesive which was bonded to concrete. A regression model was developed that followed a linear - natural log function which was used to predict the expected life of the assembly. Evaluations at different curing times confirmed the structure was more robust with longer cure durations prior to loading. Finally, the results show that under the conditions the assembly was tested, there was only a small amount of inelastic creep and the regression models demonstrated the potential for a stable structure lasting several decades.

Chemical Modification of Wood with Alkylene Oxides, Vinylpirrolidinone and Furans:Effects on Dimensional Stabilization

  • Guevara, R.;Moslemi, A.A.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제10권4호
    • /
    • pp.38-52
    • /
    • 1982
  • The effect of propylene oxide, butylene oxide, furan resin, and vinylpyrrolidinone in controlling wood dimensional stability have been examined. Wood in the green or ovendry condition was treated with various chemical treatments using a vacuum-pressure procedure, and treated specimens were tested for tangential sweelling, moisture gain, and changes in sorption hysteresis. Results' indicate that propylene oxide, and butylene oxide enhanced with the crosslin king agent trimethylol propane trimethacrylate and applied to ovendry wood were the most efficient chemical treatments in controlling tangential sweeling caused by liquid water or water vapor, and in reducing water vapor adsorption. The sorption behavior of treated wood as depicted by the ratios of sorption was "very favorable" in most instances. In the particular case of furan resin treatments, ratios of sorption were improved from 25 to 100 percent as compared to those of untreated wood.

  • PDF

Designing an Outdoor Linear LED Luminaire with Gore-Tex Filters

  • Woo-young Kim;Seong-Kweon Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.93-102
    • /
    • 2024
  • We introduce a novel outdoor linear LED luminaire enhanced with Gore-Tex filters, designed to overcome the challenges of moisture and thermal management in harsh environments. This luminaire integrates expanded polytetrafluoroethylene (ePTFE)-commercially known as Gore-Tex-achieving superior waterproofing and dustproof qualities while maintaining breathability to prevent internal condensation. The design process, from conceptualization through prototyping and testing, is detailed, highlighting the luminaire's improved durability and stability under varying conditions. Experimental results demonstrate that our design significantly extends the operational lifespan and reliability of outdoor LED lighting systems by mitigating thermal and moisture-related degradation. This study not only advances ePTFE's application in lighting technologies but also offers a scalable model for enhancing the performance of LED luminaires in outdoor settings.

STUDY ON STABILITY, EFFICACY, AND EFFECT OF A CREAM CONTAINING 5% OF RETINYL PALMITATE

  • Ji, Hong-Keun;Jeon, Young-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제23권3호
    • /
    • pp.48-74
    • /
    • 1997
  • Retinlyl Palmitate, the skin normalizerm is useful to promote greater skin elasticity, to diminish lipid peroxidation and skin roughness following UV exposure, and promote a youthfulgeneral skin appearance. In manufacturing creams, Retinyl Palmitate, which is a derivative of retinol, is used since reionol is easily oxidized by heat and light. However, only a small mount of retinol, is used since using a large amount of it may be harmful to its stability. In this study, thermal stability and UV stability of W/O-, W/S-, O/W-, and MLV-type creams containing 5% of retinyl palmitate and 10% of tocopheryl acetate are measured by Chroma Meters, and the content of RP is quantitatively analyzed by HPLC at 25 $^{\circ}C$ and 45 $^{\circ}C$. Also, how RP has been changed by heat, light, etc. is measured by HPLC, and toxicity of the changed substance is studied. Particle size of each type of the cream if measured, cellular renewal is measured by using DHP and Chroma Meters in order to study their efficacy and effect, moisture content is measured by using Corneometer and Tewameter, and how much wrinkles are improved is studied by using Image Analyzer. Development of MLV-type cream containing 5% of RP and 10% of TA, and satisfying conditions for better creams has been successful.

  • PDF

A Study of Sports Socks Varying Knitted Fabrics on Hygienic and stability Properties (각종 편성소재에 따른 스포츠양말의 위생성과 형태안정성에 관한 연구)

  • 이명자;김칠순
    • The Research Journal of the Costume Culture
    • /
    • 제7권5호
    • /
    • pp.165-176
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of various knitted fabrics of sports socks on their properties of hygiene and stability. Seventeen men\`s sports socks to represent five groups with different fiber content, knit structure, yarn fineness, and finishing were used. Properties of hygiene and stability of socks were determined. The results were as follows ; 1. Evaluation of Water, vapor and heat transport properties in socks with varing fiber content showed that cotton 100% socks had the highest drop absorbency, wickability, water absorbency and water retention. Polypropylene 100% socks had an excellent wickability and moisture permeability. Acrylic blend socks had the highest thermal resistance. 2. The greatest knit stretch and knit growth of socks having lower power were found to be with cotton 100% socks had the lowest stretch. Acrylic blend socks had a excellent stretch but low fabric growth, which could give a good fir sensation during wear. 3. The commerical antimicrobial finished socks showed excellent durability after repeated cycles of laundering. 4. Length and width shrinkages were found in all laundered samples during initial cycles due to rearrangement by mechanical relaxation. Shrinkages showed no further changes and reached equilibriums after 5 cycles. Cotton 100% or cotton blend socks showed lower dimensional stability than other socks during fabric care.

  • PDF

Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material (폴리아크릴산 나트륨 염이 함침된 흡수성 고분자 복합 필름의 제조 및 특성 연구)

  • Lee, Youn Suk;Choi, Hong Yeol;Park, Insik
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.530-537
    • /
    • 2014
  • Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at $25^{\circ}C$. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

A study of applying soil moisture for improving false alarm rates in monitoring landslides (산사태 모니터링 오탐지율 개선을 위한 토양수분자료 활용에 관한 연구)

  • Oh, Seungcheol;Jeong, Jaehwan;Choi, Minha;Yoon, Hongsik
    • Journal of Korea Water Resources Association
    • /
    • 제54권12호
    • /
    • pp.1205-1214
    • /
    • 2021
  • Precipitation is one of a major causes of landslides by rising of pore water pressure, which leads to fluctuations of soil strength and stress. For this reason, precipitation is the most frequently used to determine the landslide thresholds. However, using only precipitation has limitations in predicting and estimating slope stability quantitatively for reducing false alarm events. On the other hand, Soil Moisture (SM) has been used for calculating slope stability in many studies since it is directly related to pore water pressure than precipitation. Therefore, this study attempted to evaluate the appropriateness of applying soil moisture in determining the landslide threshold. First, the reactivity of soil saturation level to precipitation was identified through time-series analysis. The precipitation threshold was calculated using daily precipitation (Pdaily) and the Antecedent Precipitation Index (API), and the hydrological threshold was calculated using daily precipitation and soil saturation level. Using a contingency table, these two thresholds were assessed qualitatively. In results, compared to Pdaily only threshold, Goesan showed an improvement of 75% (Pdaily + API) and 42% (Pdaily + SM) and Changsu showed an improvement of 33% (Pdaily + API) and 44% (Pdaily + SM), respectively. Both API and SM effectively enhanced the Critical Success Index (CSI) and reduced the False Alarm Rate (FAR). In the future, studies such as calculating rainfall intensity required to cause/trigger landslides through soil saturation level or estimating rainfall resistance according to the soil saturation level are expected to contribute to improving landslide prediction accuracy.