• Title/Summary/Keyword: moisture capacity

Search Result 757, Processing Time 0.028 seconds

Gelatinization properties of heat-moisture treated waxy rice starches (수분-열처리한 찹쌀 전분의 호화 성질)

  • Chang, Myung-Sook;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.33 no.3
    • /
    • pp.223-230
    • /
    • 1990
  • Gelatinization properties of heat-moisture treated Olchal(japonica) and Hankangchalbyeo(j x indica) waxy rice starches were compared. The blue value, light transmittance of starch suspension and viscosity in sodium hydroxide solution were similar between two starches. Olchal starch showed lower water binding capacity, swelling power md peak viscosity by amylograph than Hankangchalbyeo starch. Upon heat-moisture treatments all above parameters were decreased. The critical sodium hydroxide concentration for gelatinization was increased by treatments. The initial pasting temperature of Olchal starch was higher than that of Hankarlgchalbyeo. All amylograph reference points increased by the treatments, except the maximum viscosity or 2l% moisture-treated Olchal starch. Starches treated at 18% moisture level showd the highest value of consistency index. The activation energy of consistency index for gelatinized Olchal starch was lower than that for Hankangchalbyeo starch. The heat-moisture treatments had no effect on activation energy.

  • PDF

A Study on TOPMODEL Simulation for Soil Moisture Variation (TOPMODEL의 토양수분 변동성 모의에 관한 연구)

  • Kim, Jin-Hun;Bae, Deok-Hyo;Jang, Gi-Hyo;Jo, Cheon-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.65-75
    • /
    • 2002
  • The objectives of this study are to analyse model-based soil moisture variations depending on model parameters m and $T_0$ and to evaluate the model performance for the simulation of soil moisture variations by the comparison of observed groundwater levels and model-driven soil moisture amounts and observed and simulated river discharges at the basin outlet. The selected study area is the Pyungchang IHP river basin with outlet at Sanganmi station and the summer flooding events during '94-'98 are used for the analysis. As a result, soil moisture holding capacity is increased according to increase the parameter m that represents effective groundwater depth. This phenomenon is especially dominant when higher m and $T_0$ values are used. The qualitative comparison of computed base flow and observed groundwater level shows that the base flow peaks are reasonably simulated and the decreasing limbs of hydrograph are mainly caused by base flows. It is concluded that TOPMODEL can be used effectively for simulating basin-averaged soil moisture variations in addition to river flow generations.

A Study on Performance Characteristics of a Dehumidifier with Multi-layer Type Heat Exchangers Varying Frontal Air Velocity (다층형 열교환기를 이용한 제습기의 전면 풍속 변화에 따른 성능 특성에 관한 연구)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2323-2327
    • /
    • 2010
  • The experimental apparatus consists of dehumidifier with multi-layer type heat exchangers to remove the moisture from automatic equipments, semiconductors, and manufacturing processes under the low temperature environment, and chemical production lines which are likely to take moisture. The major components of this system are four evaporators with different fin pitch, two compressors, two condensers and an expansion valve. In this study, the performance characteristics of dehumidifier is analyzed by the variations of frontal air velocity in the first heat exchanger(evaporator). The cooling capacity of each heat exchanger is acquired by the enthalpy calculating from measuring point of temperature and relative humidity of the first heat exchanger from 1.0m/s to 4.0m/s with increasing interval 0.5m/s, and the front air velocity. As a result, it is found that cooling capacity of the first heat exchanger showed the best cooling capacity when its frontal air velocity is 2.0 m/s.

Changes in Moisture Contents of Rice-hull Based Root Media and Growth Responses of 'Seolhyang' Strawberry during Vegetative Propagation (육묘 과정 중 포트에 충진된 팽연왕겨 혼합상토의 함수량 변화와 '설향' 딸기의 생장 반응)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • This research was conducted to investigate the changes in moisture retention capacities of expanded rice-hull (ERH)-based root media and their influences on the growth of mother and daughter plants in vegetative propagation of 'Seolhyang' strawberry. The proportion of water at the container capacity of ERH medium was in the range of 20 to 23%. This range was lower than the 60 to 66% of strawberry-specialized medium, the 30 to 34% of soil mother material (SMM) and the 30 to 35% of loamy sand. The moisture content of ERH was reduced to 10 to 12% at 8 hours after irrigation, and there were large variations among replications of ERH medium. Among four kinds of root media formulated to contain ERH, the medium of ERH + coir dust (CD) (55 + 45%, v/v) had 26.5 and 32.5% water contents at 20 and 40 days after irrigation to daughter plants, respectively. The m edia o f ERH + sandy loam (S L) and E RH + S MM showed similar trends i n moisture r etention. The pH and EC i n the all root media tested were in the range of 6.7 to 7.1 and 0.03 to $0.08dS{\cdot}m^{-1}$, respectively. The pHs and ECs measured at 20 and 40 days after irrigation were not significantly different in each root medium. Among the root media formulated to contain ERH, the growth of daughter plants was the highest in the treatment of ERH + SL (55 + 45%, v/v). As the blending rate of coir dust was elevated in the ERH + CD media, moisture retention capacity increased gradually, but the growth of daughter plants became worse even though the medium showed higher moisture retention capacity than other root media tested. The growth of roots and aboveground tissues of daughter plants deteriorated in the root media formulated by blending ERH + perlite (PE) at various ratios. The results of this research suggest the optimum formulations of root media and management of moisture content in raising of strawberry daughter plants when ERH is a component of root media.

Composting High Moisture Materials : Bio-Drying Livestock Manure in a Sequentially Fed Reactor

  • Lee, J.H.;Park, H.L.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.701-710
    • /
    • 1996
  • Composting has gained rapid acceptance as a method of recyling relatively dry organic materials such as leaves and brush and , when alternative disposal costs are high, even moist materials such as grass clippings and dewatered sewage sludges. However, as moisture contents rise above 60% , the need for a dry bulking amendment increase the costs of composting , both by direct purchases of amendment and though increased reactor capacity and materials handling requirements. High moisture materials also present increased risks of anaerobic odor formation through reduced oxygen transport (Miller , 1991) . These costs and operational challengers often constrain the opportunities to compost high moisture materials such as agricultural manures. During the last several decades economies of scale in livestock production have been increasing livestock densities and creating manure management challenges throughout the world. This issue is particularly pressing in Korea, where livestock arms typically manage little or no cropland, and the nutrients and boichemical oxygen demand in manure pose a serious threat to water quality. Composting has recently become popular as a means of recycling manure into products for sale off the farm, but bulking amendments (usually sawdust) are expensive designed to minimize bulking agent requirements by using the energy liberated by decompostion. In this context the composting reactor is used as a biological dryer, allowing the repeated use of bulking amendment with several batches of manure.

  • PDF

Effects of heat-moisture treatment on functional properties of high amylose rice starches with different crystalline types (결정형이 다른 고아밀로스 쌀 전분의 기능적 성질에 수분열처리 효과)

  • Huang, Mengyao;No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • The effects of heat-moisture treatment (HMT) on the functional properties of high amylose rice starches (HARSes) purified from Korean rice varieties (A-type Goami and Singil and B-type Dodamssal and Goami2) were investigated. HMT was accomplished with moisture contents of 18 and 27% and heated at 100℃ for 16 h. While the amylose content, swelling power and solubility decreased after HMT, the water binding capacity and resistant starch (RS) content increased with increasing moisture content after HMT. The X-ray diffraction patterns of all HARSes did not change after HMT, but a decrease in the intensity of peak at 2θ=5° was observed in B-type HMT HARSes. While the starch granules aggregated after HMT, their shape and size remained unchanged. B-type HARSes exhibited higher gelatinization temperatures and lower pasting viscosities than A-type HARSes following HMT. The results, thus, suggest that while the crystalline intensity of B-type Dodamssal and Goami2 rice starches did not change after HMT, the RS content, water binding capacity, and pasting temperatures of all HARSes increased with increasing moisture content after HMT.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Ecological Studies on the Bog in Changnyeung Area(1. Vegetation and Environmental Factors) (昌寧地域 濕原의 生態學的 硏究 1. 植生과 環境要因)

  • Ri, Chong Un;Woen Kim;Hee Cheon Park
    • The Korean Journal of Ecology
    • /
    • v.8 no.3
    • /
    • pp.171-176
    • /
    • 1985
  • The structure of natural vegetation and soil condition in bog area of Woopo, Changnyeung, South Korea were observed. The vegetations in the investigated area could be classified into two groups; a typical bog vegetation with dominant species of Eleocharis mamillats, Acorus calamus and Persicaria hostatosagittata and the transitional vegetation of three neighboring areas. Interspecific correlation in the investigated area was very close. In the typical bog vegetatiion regions (region II, III, V, VI, VII, VIII and X) soil pH, field moisture capacity, available P content and exchangeable K were moderate. But, In the transitiional area I, with the highest humus content, field moisture capacity and exchangeable K Salix gracilistyla was dominant. In the region IV with the lowest humus and a ailable P content and with high soil pH Geophyta was a major component species. Also Acorus region IX with the lowest content of exchangeable K Therophyta was dominant and plant species was diverse due to weak water influence. The vegetation structure of the region IX was most different from that of the whole vegetation.

  • PDF

Adsorption characteristics of $SO_2$ on Vermi Cast (지렁이 분변토의 $SO_2$ 가스 흡착특성)

  • 김춘희;고경숙;안철우
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.145-149
    • /
    • 2000
  • The purpose of this study was to determine whether Vermi Cast could be used effectively to remove $SO_2$ from flue gas, and then to investigate optimum adsorption conditions. The Vermi Cast used as adsorbent was mechanically screened with 8~20 mesh sieve. The adsorption data for $SO_2$ were regressed using the Freundlich isotherm. The fit was generally satisfactory ($R^2$=0.945~0.982). With the temperature changes from 2$0^{\circ}C$ to 4$0^{\circ}C$, the constant k in Freundlich isotherm qe= $kCe^{1/n}$, decreased from 1.409 at 2$0^{\circ}C$to 0.297 at 4$0^{\circ}C$, and the exponent 1/n were decreased from 0.343 to 0.134. With the bed depth changes from 10cm to 30cm, the adsorption capacity expressed as mmol of $SO_2$ adsorbed per g of Vermi Cast increased from 0.247 to 0.381. Moisture content is an important parameter in the $SO_2$ adsorbed were observed over 0.3mmol $SO_2$ /g Vermi Cast. The best adsorption capacity was 0.487mmol $SO_2$ /g Vermi Cast, and it was obtained with moisture content 37%, temperature 2$0^{\circ}C$. From the above results, ti might be concluded that Vermi Cast is effectively as a good adsorbent to remove $SO_2$ from flue gas.

  • PDF

Effects of Various Parameters on Biodegradation of Degradable Polymers in Soil

  • Shin, Pyong-Kyun;Jung, Eun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.784-788
    • /
    • 1999
  • The effects of pH, moisture content, and the relative amount of a polymer sample on the biodegradation of degradable polymers in soil were studied using various polymer materials such as cellulose, poly-(butylene succinate-co-adipate) (SG) polycaprolactone (PCL), a blend of PCL and starch (PCL-starch), and a poly-lactic acid (PLA). As with other materials, the polymers degraded faster at a neutral pH than at either acidic or basic conditions. Moisture contents of 60 and 100% water holding capacity exhibited a similar biodegradability for various polymers, although the effects differed depending on the polymer. For synthetic polymers, biodegradation was faster at 60%, while the natural polymer (cellulose) degraded faster at 100%. Fungal hypae was observed at a 60% water holding capacity which may have affected the biodegradation of the polymers. A polymer amount of 0.25% to soil revealed the highest biodegradability among the ratios of 0.25, 0.5, and 1%. With a higher sample amount, the residual polymer could be recovered after the biodegradation test. It was confirmed that a test for general biodegradation condition can be applied to plastic biodegradation in soil.

  • PDF