• Title/Summary/Keyword: moisture budget

Search Result 28, Processing Time 0.021 seconds

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF

Estimation of Submarine Groundwater Discharge in Il-Gwang Watershed Using Water Budget Analysis and Rn Mass Balance (물 수지 방법과 라돈 물질수지 방법을 이용한 일광유역의 해저용출수 평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Lee, Yong-Woo;Hamm, Se-Yeung;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1165-1182
    • /
    • 2011
  • The evaluation of potential submarine groundwater is an important research topic for exploring an alternative water resource. Two different approaches, water budget analysis and Rn mass balance method, were employed to investigate the annual variation of submarine groundwater discharge in 2010 at a marine watershed located at the south-eastern part of Korean Peninsula. In order to obtain reliable hydrological data during study period, temporal and spatial variations of rainfall and soil moisture had been collected and hydro-meterological data such as temperature, humidity and wind speed were collected The runoff response was simulated using SCS-CN method with spatial distributions of landuse and soil texture from GIS analysis. Six different methods were used to estimate the monthly variation of evapotranspiration and field measurements of soil moisture were used to account for the infiltration. Comparisons of infiltration and surface runoff between simulation and water balance with measurements showed coincidence. The water budget analysis and Rn mass balance method provide mean daily submarine groundwater as 5.35 and 4.07 $m^3/m/day$ in 2010, respectively.

Evaluation of MODIS-derived Evapotranspiration According to the Water Budget Analysis (물 수지 분석에 의한 MODIS 위성 기반의 증발산량 평가)

  • Lee, Yeongil;Lee, Junghun;Choi, Minha;Jung, Sungwon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.831-843
    • /
    • 2015
  • This study estimates MODIS-derived evapotranspiration data quality by revised RS-PM algorithm in Seolmacheon test basin. We used latent flux with eddy covariance method to evaluate MODIS-derived spatial evapotranspiration and gap-filled these data by three methods (FAO-PM, MDV and Kalman Filter) and to quantify daily evapotranspiration. Gap-filled daily evapotranspiration data was used to evaluate evapotranspiration computed by revised RS-PM algorithm derived MODIS satellite images. For the water budget analysis, we used soil moisture content that is quantified to average individual soil moisture rate observed by TDR (Time Domain Reflectometry) sensor at soil depth. The soil moisture variation is calculated in consideration from initial to final soil moisture content. According to the result of this study, evapotranspiration computed by revised RS-PM algorithm is very larger than eddy covariance data gap-filled by three methods. Also, water budget characteristics is not closed. We could analysis that MODIS-derived spatial evapotranspiration does not represent actual evapotranspiration in Seolmacheon.

Estimation of the Heat Budget Parameter in the Atmospheric Boundary Layer considering the Characteristics of Soil Surface (지표면의 특성을 고려한 대기경계층내의 열수지 parameter 추정 -열수지 parameter를 이용한 중규모 순환의 수치예측-)

  • 이화운;정유근
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.727-738
    • /
    • 1996
  • An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of Tf(foliage temperature), Tg(ground temperature), and qg(ground specific humidity). The model was verilied by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soil(sand and peat), the change for shielding factor, and the change for a kind of vegetation.

  • PDF

The Role of the Background Meridional Moisture Gradient on the Propagation of the MJO over the Maritime Continent

  • Daehyun Kang;Daehyun Kim;Min-Seop Ahn;Soon-Il An
    • Journal of Climate Change Research
    • /
    • v.34 no.16
    • /
    • pp.6565-6581
    • /
    • 2021
  • This study investigates the role of the background meridional moisture gradient (MMG) on the propagation of the Madden-Julian oscillation (MJO) across the Maritime Continent (MC) region. It is found that the interannual variability of the seasonal mean MMG over the southern MC area is associated with the meridional expansion and contraction of the moist area in the vicinity of the MC. Sea surface temperature anomalies associated with relatively high and low seasonal mean MMG exhibit patterns that resemble those of El Niño-Southern Oscillation. By contrasting the years with anomalously low and high MMG, we show that MJO propagation through the MC is enhanced (suppressed) in years with higher (lower) seasonal mean MMG, although the effect is less robust when MMG anomalies are weak. Column-integrated moisture budget analysis further shows that sufficiently large MMG anomalies affect MJO activity by modulating the meridional advection of the mean moisture via MJO wind anomalies. Our results suggest that the background moisture distribution has a strong control over the propagation characteristics of the MJO in the MC region.

Suggestion of Method to Classify Moisture or Dryness Condition from Moisture Index Obtained by NDVI (NDVI를 이용한 습윤지표를 기준으로 습윤 및 건조상황의 분류 방법 제안)

  • Kim, Joo-Cheol;Shin, Sha-Chul;Lee, Sang-Jin;Hwang, Man-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.84-94
    • /
    • 2009
  • Moisture Index time series derived from NOAA/AVHRR data have showed to be useful for humid and arid states. The humid/arid states of the Geum river basin are classified by means of the moisture index estimated from the climatic water budget model. Validations showed that the moisture index has excellent ability to detect humid/arid conditions and to measure time of its onset, intensity and duration. In this study, a simple method to classify the moisture index is proposed by statistical distribution condition. Also, the moisture index is compared with the regional actual state to detect drought area.

  • PDF

Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System (경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가)

  • Kim, Se-Chang;Park, Bong-Ju
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.503-511
    • /
    • 2013
  • The purpose of this study was to evaluate temperature reduction and heat budget of extensive modular green roof planted with Sedum sarmentosum and Zoysia japonica. Plant height and green coverage were measured as plant growth. Temperature, net radiation and evapotranspiration of concrete surface, green roof surface, in-soil and bottom were measured from August 2 to August 3, 2012 (48 hours). On 3 P.M., August 3, 2012, when air temperature was the highest ($34.6^{\circ}C$), concrete surface temperature was highest ($57.5^{\circ}C$), followed by surface temperature of Sedum sarmentosum ($40.1^{\circ}C$) and Zoysia japonica ($38.3^{\circ}C$), which proved temperature reduction effect of green roof. Temperature reduction effect of green roof was also shown inside green roof soil, and bottom of green roof. It was found that Zoysia japonica was more effective in temperature reduction than Sedum sarmentosum. Compared with the case of concrete surface, the highest temperature of green roof surface was observed approximately 2 hours delayed. Plant species, temperature and soil moisture were found to have impact on surface temperature reduction. Plant species, air temperature, soil moisture and green roof surface temperature were found to have impact on temperature reduction in green roof bottom. As results of heat budget analysis, sensible heat was highest on concrete surface and was found to be reduced by green roof. Latent heat flux of Zoysia japonica was higher than that of Sedum sarmentosum, which implied that Zoysia japonica was more effective to improve thermal environment for green roof than Sedum sarmentosum.

Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon (아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim;Hyoeun Oh
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.257-271
    • /
    • 2024
  • In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.

Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach (기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성)

  • Nam, Won-Ho;Hong, Eun-Mi;Choi, Jin-Yong;Cho, Jaepil;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

A Numerical Study of Mesoscale Model Initialization with Data Assimilation

  • Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.342-353
    • /
    • 2014
  • Data for model analysis derived from the finite volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4) and the Land Data Assimilation System (LDAS) have been utilized in a mesoscale model. These data are tested to provide initial conditions and lateral boundary forcings to the Purdue Mesoscale Model (PMM) for a case study of the Midwestern flood that took place from 21-23 May 1998. The simulated results with fvGCM and LDAS soil moisture and temperature data are compared with that of ECMWF reanalysis. The initial conditions of the land surface provided by fvGCM/LDAS show significant differences in both soil moisture and ground temperature when compared to ECMWF control run, which results in a much different atmospheric state in the Planetary Boundary Layer (PBL). The simulation result shows that significant changes to the forecasted weather system occur due to the surface initial conditions, especially for the precipitation and temperature over the land. In comparing precipitation, moisture budgets, and surface energy, not only do the intensity and the location of precipitation over the Midwestern U.S. coincide better when running fvGCM/LDAS, but also the temperature forecast agrees better when compared to ECMWF reanalysis data. However, the precipitation over the Rocky Mountains is too large due to the cumulus parameterization scheme used in the PMM. The RMS errors and biases of fvGCM/LDAS are smaller than the control run and show statistical significance supporting the conclusion that the use of LDAS improves the precipitation and temperature forecast in the case of the Midwestern flood. The same method can be applied to Korea and simulations will be carried out as more LDAS data becomes available.