• Title/Summary/Keyword: moire artifact

Search Result 5, Processing Time 0.021 seconds

Image Analysis Using Grid Suppression Software to Remove Moire Artifact from Micro Lesions of Sprague Dawley Rat (Sprague Dawley Rat의 미세병변에서 Moire Artifact를 제거하기 위한 Grid suppression software 사용 후 영상분석)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.575-580
    • /
    • 2017
  • Because moire artifacts overlap with fine lesions and frequency bands, image processing software that removes moire artifacts can lead to loss of micro lesions. In this study, microscopic lesions such as microcalcification and microfracture were randomly formed on SD (Sprague Dawley) rats and image and optimized grid images were compared and analyzed using reference image and grid suppression software. The images were read by two consecutive radiologists using a McNemar's test. Among the 73 microcalcifications, in the 13 cases after grid suppression, the image of the optimized grid shows the loss of image in 3 cases, and the image after grid suppression shows statistically significant image loss (p=0.021). In all 53 fracture lines, there were 19 cases of image loss after the grid suppression, and only one case of the optimized grid showed no image loss. Therefore, the use of grid suppression software to remove moire artifacts should be carefully considered in the diagnosis of micro lesions.

Comparison of Images Using Optimized Grid and Images Using Grid Supperession Software in the Diagnosis of Micro Lesions (미세병변 진단에서 Optimized Grid을 사용한 영상과 Grid Supperession Software를 사용한 영상의 비교분석)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.149-155
    • /
    • 2018
  • Quantitative analysis was performed to confirm that moire artifact was removed without loss of image when using grid suppression software in the diagnosis of micro lesions. we showed that grid suppression images can be morphologically different from original images as they are significantly lower than those of the optimized grid in the similarity analysis with reference images in mammographic phantom images. We were confirmed that images of microcalcification with smaller signal than noise were lost because the pixel values of all lesions increased significantly after the grid suppression, The change in contrast using the NORMI 13 X-ray test phantom was reduced to 30% of the reference image, This result was significantly lower than the 90% when using the optimized grid. In conclusion, the use of grid suppression software in clinical images should be carefully considered because of the possibility of misdiagnosis due to micro lesion loss and morphological changes.

Study on a moir$\acute{e}$ Artifact in the Use of Carbon Interspaced Antiscatter Grids for Digital Radiography (탄소 중간물질 그리드를 사용한 DR system에서의 moir$\acute{e}$ artifact에 관한 연구)

  • Lee, Sung-Ju;Cho, Hyo-Sung;Choi, Sung-Il;Cho, Hee-Moon;Oh, Ji-Eun;Lee, So-Young;Park, Yeon-Ok;Lee, Min-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.5-9
    • /
    • 2008
  • Antiscatter grids are widely used in radiography to remove scattered X-rays and thus improve the image contrast. However, the use of grids makes moir$\acute{e}$ artifact in the digital image, and this can be a critical reason for a mistaken diagnosis. In this paper, we examined that moire artifacts are how to relate with grid frequency, pixel pitch and grid rotation angle. To experiment we prepared 6 grids having different line frequencies (4.0 to 8.5lines/mm) and tested with a DR imager having a $139{\mu}m{\times}139{\mu}m$ pixel size. In the result of this experiment, we could get data about moir$\acute{e}$ artifact that could be make solution to remove the line artifact for the successful use of the grid in digital radiography. The acquired data and theory through this experiment, are expected to make contribution to the elimination of moir$\acute{e}$ artifact in the DR system.

  • PDF

Image Analysis of Micro Lesions According to Grid Frequency After Removal of Moire Artifact (Moire artifact 제거 후 그리드 주파수에 따른 미세병변의 영상분석)

  • Lee, Sang-Ho;Kim, Gyoo-Hyung;Yang, Oh-Nam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • Morphological information such as shape and margin of micro lesion is important information for diagnosis of disease in clinical imaging. In this study, we investigated the morphological changes of the micro lesions by comparing the contrast and area in grid suppressed DR images according to grid frequency. In the profile analysis of the image, the mass showed an average intensity variation of 8.6 ~ 72.4 after suppression, The higher the grid frequency, the more the contrast was increased. However, in the images obtained using 103 lp / inch, which is a grid frequency less than the sampling frequency, the contrast of the mass in the vertical direction decreased after suppression. In the binary image, the area change of the mass was also large. As a result, the shape, size, and margin of the mass changed. In the case of very small calcification, the higher the grid frequency is the larger the change in contrast, so that a clear image can be obtained in the post-suppression image. However, we could confirm that the margin of the lesion was blurred and the lesion was lost in some of the images using the 103 lp / inch grid. The higher the frequency of the grid, The change of the contrast of fiber occurred largely and clear boundary was confirmed. The decrease of the number of pixels was small and morphological change was small. In conclusion, when using a grid frequency that is not suitable for the sample frequency, morphological changes or lesion loss of micro lesions in the post- suppression image may give the possibility of misdiagnosis in diagnosis and differentiation of the image.

Color Interpolation Algorithm for Pixel Resolution Modus of Image Sensor (영상센서의 출력 해상도 모드를 고려한 색상 보간 알고리즘)

  • Kim, Bu-Gong;Kim, Moon-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.129-138
    • /
    • 2014
  • Various interpolations for digital imaging devices with a single image sensor have proposed. However, conventional methods did not consider the resolution modus of image sensor using periodic sampling. Therefore, the resulting images have problems such as quality degradation and color artifacts(color moire, zipper). In this paper, we propose a color interpolation algorithm for pixel resolution modus of image sensor. The proposed algorithm consisted of an initial step to compensate edge prediction effectively and refinement step using minimum directions for pixel resolution modus. To analyze a result of the proposed algorithm with conventional methods, we evaluated subjectively using images quality comparison and objectively using PSNR(Peak Signal to Noise Ratio). Experimental results showed that the proposed algorithm was more successful in eliminating the color artifacts than conventional methods judged by both objective and subjective criteria.