• Title/Summary/Keyword: modulus reduction

Search Result 323, Processing Time 0.023 seconds

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

Physical Properties of Sulfur Concrete with Modified Sulfur Binder (유황개질 바인더를 사용한 유황 콘크리트의 물리적 특성)

  • Bae, Sung Geun;Gwon, Seong Woo;Kim, Se Won;Cha, Soo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.763-771
    • /
    • 2014
  • Recently, a huge amount of sulfur has been produced as a byproduct of petroleum refining processes in Korea. Sulfur concrete is made of modified sulfur binder instead of cement paste, which has advantages of reducing $CO_2$ emission from cement industry as well as utilizing surplus sulfur. Also, sulfur concrete is a sustainable material that can be repetitively recycled. In this study, the physical properties of sulfur concrete are experimentally investigated. From the test results, sulfur concrete showed compressive strengths higher than at least 50MPa. Also, the unit weight, modulus of elasticity and splitting tensile strength of sulfur concrete was similar to that of Portland cement concrete (PCC). The coefficient of thermal expansion of sulfur concrete was a little larger than that of Portland cement concrete and sulfur concrete with mineral filler is helpful to lower the coefficient of thermal expansion. recycled aggregate sulfur concrete resulted in a slight reduction in the compressive strength, but sulfur concrete with recycled aggregate can achieve the high strength characteristics.

Effects of the Thermal Stress and Water Pressure on the Deformation Behavior of Granite (열응력과 수압이 화강암의 변형 거동에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this study, effects that thermal stress and water pressure have on the deformation behaviour of granite specimens recovered in Gagok Mine are estimated. To analyze effects of the thermal stress and water pressure on the deformation behaviour, granite specimens were preheated with cycles of predetermined temperatures ranging $200^{\circ}C$ to $700^{\circ}C$ and 500, 600, $700^{\circ}C$ specimens were pressurized to 7.5 MPa. The deformation behaviour of the specimens had been studied by performing uniaxial compressive tests. Axial and lateral strains of specimens were found to increase with increasing temperature, and above $600^{\circ}C$, the increase of strains were more pronounced. The reduction trends of uniaxial compressive strength and Young's modulus with temperature appeared to follow an exponential decay function. Specimens under water pressure showed the more inelastic deformation characteristics, which means that water pressure has an effect on the widening and extending of micro-cracks existed in preheated specimens.

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

Effects of Peroxides on the Properties of Reclaimed Polypropylene/Waste Ground Rubber Tire Composites Prepared by a Twin Screw Extrusion

  • Kim, Seonggil;Lee, Minji;Lee, Hyeongsu;Jeong, Hobin;Park, Yuri;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • In this study, the reclaimed polypropylene (RPP) and waste ground rubber tire (WGRT) were used to simulate the thermoplastic vulcanizate (TPV) for cost reduction and resources recycling. Also, we examined the effects of dicumyl peroxide (DCP) and 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (DTBPH) as peroxide type cross-linking agents to enhance the properties of TPV's. The components of RPP and WGRT were fixed at 30 and 70 wt%, and DCP and DTBPH were added in the concentrations from 0.5 to 1.5 phr, respectively. RPP/WGRT composites with different contents of DCP and DTBPH were prepared by a modular intermeshing co-rotating twin screw extruder. The Young's modulus of composites were decreased with increasing peroxides contents. On the other hand, tensile strength, elongation at break, and impact strength of the composites were increased with peroxide contents. We also confirmed that interfacial adhesion between RPP and WGRT was considerably improved by adding the peroxides. Taken together, DTBPH added RPP/WGRT composites exhibited better mechanical properties rather than those of DCP added composites.

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

Influence of Carbonation and Freezing-thawing on the Chloride Diffusion in Concrete (탄산화 및 동결융해 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun;Jung, Sang-Hwa;Bok, Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.57-64
    • /
    • 2007
  • Recently, the corrosion of concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation and freezing-thawing action to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The small reduction of relative dynamic elastic modulus induced from freezing-thawing increases the chloride ion penetration depths much. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation or freezing-thawing but the future studies for combined environment will assure the precise assessment.