• 제목/요약/키워드: module efficiency

검색결과 1,274건 처리시간 0.026초

PV용 투명유리와 G/G모듈의 광학적 특성 평가 및 분석 (Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application)

  • 김경수;강기환;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, we analyze the electrical optical characteristics of transparent glass for photovoltaic and glass-glass module application. The elemental facts from raw glass to laminated glass with solar cells are analyzed using UV spectrophotometer and spectroradiometer. From the data of transmittance and reflectance, the optimum PV module processing condition and selection of material for fabrication should be considered deeply for obtaining high module efficiency. Also we introduce two glasses which has 2%$\sim$4% higher transmittance using coating technology with anti-reflection material. From this experiment, we try to give some basic information for PV module manufacturing industry. The detail description is specified as the following paper.

외기 및 순환수 온도조건을 고려한 PVT-water 시스템의 성능실험 (Performance test of PVT-water system considering ambient air and circulating water temperature)

  • 정용대;남유진
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.83-88
    • /
    • 2015
  • Purpose: Photovoltaic system is a technique for producing electrical power by utilizing solar energy, which can be used over 20 years with simple maintenance. However, in the case of photovoltaic systems, the energy conversion efficiency decreases as the surface temperature of module increases, compared with other renewable energy technologies. In this regard, PVT module can increase the energy utilization of a composite module as producing heat and electricity simultaneously by using solar energy. Currently, many researches have been promoting in order to develop a high efficiency PVT module in Korea. However, there are a few studies about the performance of the modules corresponding the shape of types and various heat exchangers of the PVT module. In this study, the electrical performance was measured by the change of the ambient temperature and the circulating water temperature using the fabricated PVT module. Method: Experiments were performed using a solar simulator. And this experiment was assumed that the weather condition was in each season, as winter, spring, autumn and summer. It was identified that the I-V curve associated with the change of the experimental conditions and confirmed the change in the electrical characteristics. Result: As a result, it was figured out that the surface temperature and the electrical performance changes in case conditions. The electrical performance was calculated in different temperature condition and the power production was confirmed by the change of module temperature.

태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구 (A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System)

  • 서호영;이경원;윤정훈;이순환
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.

간략화 된 모듈 기반의 휴머노이드 로봇을 위한 자기충돌 탐지 (Simplified Module Based Self-collision Detection for Humanoid Robots)

  • 곽환주;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.240-241
    • /
    • 2008
  • We are presenting the efficient and robust simplified module based self-collision detection of humanoid robot simulator. For safe and reliable operations of humanoid robot, the self-collision detection is essential and extremely important. The main methods of self-collision detection are inverse X-Y-Z fixed angles and module distance filtering (MDF). According to experiments on the humanoid robot simulator with the self-collision detection, we could have a confidence about the efficiency of the self-collision.

  • PDF

광섬유를 이용한 자연채광시스템 적용 연구 (A Study on the Application of Sunlight System Using an Optical fiber)

  • 안승주;한상주;홍우식;최창호;이종혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • In recently, interests in the New & Renewable Energy are increasing because of exhaustion of fossil energy and limit of greenhouse gas emission all over the world. Furthermore, improvements in living standards and high-raise Buildings due to the industrial growth require a lot of sunlight in the interior space. Sunlight system gets the natural light into the indoor dark space. There are a lot of type of systems which are reflector type, duct type, optical fibers type and so on. And these systems consist of light-collection module, light-transporting module and light-emitting module. In this research, we installed optical fiber sunlight system in our head office building and tested the system's performance and efficiency. Optical fiber sunlight system is closely connected with hour of sunlight, due to the system have to chase the sun for the solar concentrating, and the system's light-collection and light- transporting efficiency is important factors in the system's performance. As a result of the test, system can be used about 5.66 hours on average in a day, and it has a about 3.21 times collection efficiency and 5.5% transmission loss.

  • PDF

태양광 발전의 성능향상을 위한 PV/T 시스템 개발 (Development of PV/T for Performance Improvement of Photovoltaic System)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.173-181
    • /
    • 2011
  • 본 논문에서는 건물통합형 태양광 발전 시스템의 전기적 열적 성능을 얻기 위해 하이브리드 PV/T 모듈을 제시한다. 건물 외벽에 부착하는 BIPV 시스템은 태양광 발전 시 온도상승으로 인하여 시스템의 효율이 떨어진다. 이러한 문제점의 해결과 BIPV 시스템의 효율을 향상시키기 위해 수냉방식을 적용시키고 발생된 열은 온수 시스템에 사용된다. 수냉 냉각방식은 전력손실과 물의 온도를 고려한 유량제어 알고리즘을 이용하고 실증연구를 통하여 제시한 하이브리드 PV/T 모듈의 전기적 열적 성능을 확인하여 본 논문의 타당성을 입증한다.

강유전체 세라믹스를 이용한 전자식 안정기용 절전모듈 (Power-saving Module using Ferroelectric Ceramics for Electronic Ballast)

  • 신현용
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권5호
    • /
    • pp.741-748
    • /
    • 2005
  • 형광램프용 전자식 안정기의 효율개선 및 램프의 수명연장을 위하여 강유전체 커패시터와 시간지연스위칭회로로 구성된 절전모듈을 개발하고 적용하였다. 절전모듈에 사용된 강유전체 세라믹스를 이용하여 형광램프의 부저항특성과 최적화를 시키고, 시간지연회로를 통하여 점등초기 예열형에서 비예열형으로 스위칭시켜 점등 중 필라멘트에서 소비되는 전력을 제거함으로써 약 2W의 소비전력을 감소시켜 효율개선을 실현하였으며, 역기전력 제거기능을 통하여 점등 초기 형광램프 필라멘트에 가해지는 충격을 최소화함으로써 형광램프의 수명을 연장시켰다.

  • PDF

BIPV 시스템의 효율성 향상을 위한 냉각시스템 설계 (Cooling system Design to improve efficiency of BIPV System)

  • 최정식;고재섭;김도연;정병진;최정훈;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely teen studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorithm of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

Shingled PV 모듈 적용을 위한 Ag Paste 저감 전극 구조 설계 (Design of Electrode Structure for Reducing Ag Paste for Shingled PV Module Application)

  • 오원제;박지수;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제32권4호
    • /
    • pp.267-271
    • /
    • 2019
  • A shingled PV module is manufactured by dividing and bonding. In this method, the solar cell is divided by lasers and bonded using electrically conductive adhesives (ECAs). Consequently, the manufacturing cost increases because a process step is added. Therefore, we aim to reduce the production cost by reducing the amount of Ag paste used in the solar cell front. Various electrode structures were designed and simulated. The number of fingers was optimized by designing thinner fingers, and the number of fingers with the maximum power conversion efficiency was confirmed. The simulation confirmed the maximum efficiency in the 4-divided electrode pattern. The amount of Ag paste used for each electrode pattern was calculated and analyzed. The number of fingers was optimized by decreasing the width of the finger; this will not only reduce the amount of Ag paste required but also the increase the efficiency.

형상모듈 조합의 이용 가능 여부를 활용한 생산 스케줄링 방법 (A production scheduling Method considering Usability of Form Module Combinations)

  • 한석민
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.139-144
    • /
    • 2023
  • 최근 많은 제조 기업들이 에너지 비용과 환경 인식의 증가로 인해 에너지 효율에 더 많은 관심을 기울이고 있다. 생산 시스템의 에너지 효율적인 생산스케줄링은 생산에 필요한 에너지 효율을 개선하고 비용을 절감하는 효과적인 방법이다. 본 논문에서는 타이어 생산 문제를 상정하고, 일정한 종류와 형상 모듈 종류 및 각 타이어별 주문량, 생산 모듈의 개수 및 각 종류별 생산시간을 고려하여 생산스케줄링을 구축하는 것을 목표로 하였다. 효과적인 생산스케줄링에 용이하도록 현 상태에서 이용가능한 형상 모듈 종류 및 개수를 고려하여, 다음 단계에서 생산하기로 선택이 가능한 타이어 종류를 부가적인 입력으로 이용하였고, 주문량 이상의 추가 생산이 가능하도록 하였다. 그리하여 평균 62퍼센트 가량의 생산모듈 가동률을 얻었다.