• Title/Summary/Keyword: module combination

Search Result 227, Processing Time 0.024 seconds

The Development of Image Processing System for Medical Robot Remote Application (의료용 로봇 원격 응용을 위한 영상처리 시스템 개발)

  • Kim, Joo Young;Kim, Joong Hyuk;Kim, Jung Chae;Kim, Kee Deog;Yoo, Sun K.
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.239-251
    • /
    • 2012
  • In this paper, web-base image processing system has been implemented for remote-controlled medical robot applications. The developed software system was hierarchically composed of diverse image processing and remote operation modules, and the hierarchical composition was satisfied the expandability to higher level application and the accessibility over the web. It can also support diverse file formats including DICOM, VRML, and CAD(STL) to display, transmit, store and share the processed images depending on application environment. Message-based data exchange, object-oriented module and open-source based software configuration will enable the dynamic combination associated with diverse remote medical application requirements.

Implementation of Functional Blocks of Modular Toy for Creative Education (창의적 교육을 위한 모듈형 완구의 기능 블록 구현)

  • Kim, Jong-Tae;Park, Ji-Youp;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.95-102
    • /
    • 2017
  • Modular toys for creative education require functional blocks to create various types of movements. An active drive module and a lot of passive connection blocks are needed to express motion with combination. In this paper, we propose the design of modular toys to produce various creative movements and controller structure working with them. In order to facilitate the connection between the designed modules, a connection method and a suitable mechanism are suggested. We also dealt with the design of various types of sensor modules that can work in conjunction with modular toys. Using these toys, typical standard application form that can be imitated educationally is suggested and showed the usefulness of the modular toy by actually applying it with designed modules and components. The proposed method is applied to actual educational toys, and the operation is effectively performed by recording operation and playing repetitive operation.

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

Compact Infrared/Visible Laser Transmitter Featuring an Extended Detectable Trajectory

  • Kim, Haeng-In;Lee, Hong-Shik;Lee, Sang-Shin
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.331-335
    • /
    • 2012
  • A miniaturized laser beam transmitter, in which a visible laser module at ${\lambda}$=650 nm is precisely stacked upon an infrared (IR) module at ${\lambda}$=905 nm, has been proposed and constructed to provide an IR collimated beam in conjunction with a collinear monitoring visible beam. In particular, the IR beam is selectively dispersed through a perforated sheet diffuser, so as to create a rapidly diverging close-range beam in addition to a highly defined long-range beam simultaneously. The complementary close-range beam plays a role in mitigating the blind region in the vicinity of the transmitter, which is inevitably missed by the main long-range beam, thereby uniformly extending the transmitter's effective trajectory that is sensed by a receiver. The proposed transmitter was designed through numerical simulations and then fabricated by incorporating a diffuser sheet, perforated with an aperture of 2 mm. For the manufactured transmitter, the IR long-range beam was observed to have divergences of ~2.3 and 1.6 mrad in the fast and slow axes, respectively, while the short-range beam yielded a divergence of ~24 mrad. The angular alignment between the long-range IR and visible beams was as accurate as ~0.5 mrad. According to an outdoor feasibility test involving a receiver, the combination of the IR long- and short-range beams was proven to achieve a nearly uniform trajectory over a distance ranging up to ~600 m, with an average detectable cross-section of ${\sim}60{\times}80cm^2$.

A Study on Fashion Design Using Shape Grammar (형상문법(Shape Grammar)을 활용한 패션디자인 연구)

  • Soo Kyung Ko;Chul Yong Choi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • The term 'module' is an architectural term. It refers to the components or systems that make up a finished product. As industries develop, modules have become one of the methods that can create diverse and creative designs. Traditional modular fashion design mainly focused on structural methods, such as the combination, assembly, overlap, and arrangement of modules, as well as the tessellation of geometric shapes. However, in this paper, significance lies in exploring the application of shape grammar, a design method in architecture, to fashion design. It aims to search for ways to express three-dimensional designs, derive designs that can be worn and produced, and propose fashion design by applying the rules of shape grammar to the design process. Through this analysis, the paper aims to examine the methods and characteristics of shape grammar. The research method of this paper is as follows. First, by utilizing optimized programs for implementing the modules of shape grammar, it was possible to propose a method for producing modules of shape grammar and suggest module designs. Additionally, effective methods of representation using the Clo 3D program were explored in the design development process. Second, by applying shape grammar to the fashion design process, five-dimensional modular fashion designs were proposed, including a bolero, dress 1, dress 2, setup, and coat. The proposed modular fashion design using shape grammar in this paper provides a rational design process that differentiates itself from traditional modular fashion design. By formalizing the shapes between modules and creating rules, it overcomes the limitations of design that rely on the designer's intuition or sensibility and enables the development of more diverse modular fashion designs. This application of shape grammar in fashion design can provide an important direction in exploring a sustainable fashion industry.

Design and Development of TRM for NEXTSat-2 X-band Synthetic Aperture Radar (차세대소형위성2호 X대역 합성 개구 레이더용 송·수신 모듈의 설계 및 개발)

  • Jeeheung Kim;Dong Guk Kim;Ilyoung Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.193-200
    • /
    • 2024
  • This paper describes the design and development of a transmit receiver module(TRM) for mounting on X-band SAR of the NEXTSat-2. The TRM generates the chirp signal with required bandwidth through the DDS in X-band and performs frequency conversion, combination for the signal to transmit and be received and frequency synthesis. Tx path of the TRM produces signals of total 28 bandwidths up to 96.8 MHz and has output signal level of more than + 9.37 dBm. Rx path of the TRM has minimum noise figure of 15.7 dB. The measurement results show that required requirements are satisfied. The TRM is installed on the NEXTSat-2 flight model(FM), launched by KSLV-II(Nuri) on May 23, 2023 and currently operational.

A study on the efficient use of solar energy -Analysis of the solar radiation distribution by tilts and azimuths - (태양에너지의 효율적 이용에 관한 연구 - 방위각 및 경사각별 일사량 분포도 분석 -)

  • Choi, Young Su;Lee, Seung Hwan;Kim, Jin Hyun;Choe, Jung Seob;Kim, Tae Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • This research is carried out to provide fundamental data for the design of solar photovoltaic systems. Methodologically, the solar radiation installations from 10 different pyreheliometers are measured, which are set up at 6 and 4 different levels of tilts and azimuth, respectively. Maximum of a yearly accumulated solar radiation is $1,569.8kWh/m^2{\cdot}year$ with a tilt angle of $30^{\circ}$ and an azimuth angle of $0^{\circ}$(south), $1,558.5kWh/m^2{\cdot}year$ with an azimuth angle of $0^{\circ}$(south) in combination of a tilt angle of $35^{\circ}$. This paper estimates that in designing fixed solar photovoltaic systems with a tilt angle of $12.5^{\circ}{\sim}50^{\circ}$(south) and a tilt angle of $35^{\circ}$ in combination of an azimuth angle of $S45^{\circ}W{\sim}S45^{\circ}E$, a tilt angle and an azimuth angle will cause a maximum 6.8% and 9.9% of efficiency variation respectively, depending on a installed solar module's angle and direction.

Nonlinear Prediction of Nonstationary Signals using Neural Networks (신경망을 이용한 비정적 신호의 비선형 예측)

  • Choi, Han-Go;Lee, Ho-Sub;Kim, Sang-Hee
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.166-174
    • /
    • 1998
  • Neural networks, having highly nonlinear dynamics by virtue of the distributed nonlinearities and the learing ability, have the potential for the adaptive prediction of nonstationary signals. This paper describes the nonlinear prediction of these signals in two ways; using a nonlinear module and the cascade combination of nonlinear and linear modules. Fully-connected recurrent neural networks (RNNs) and a conventional tapped-delay-line (TDL) filter are used as the nonlinear and linear modules respectively. The dynamic behavior of the proposed predictors is demonstrated for chaotic time series adn speech signals. For the relative comparison of prediction performance, the proposed predictors are compared with a conventional ARMA linear prediction model. Experimental results show that the neural networks based adaptive predictor ourperforms the traditional linear scheme significantly. We also find that the cascade combination predictor is well suitable for the prediction of the time series which contain large variations of signal amplitude.

  • PDF

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.