• Title/Summary/Keyword: modulatory

Search Result 275, Processing Time 0.022 seconds

Effect of Sojagangqi-tang on the Immunomodulatory Action (소자강기탕의 면역조절효과)

  • Shin Hyun Jong;Jeong Sang Hun;Jeong Han Sol;Lee Kwang Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1182-1187
    • /
    • 2003
  • The purpose of this research was to investigate the effect of Sojagangqi-tang(SJGQT) on the immune cell activity. The addition of SJGQT enhanced the proliferation of cultured-mice splenocytes and thymocytes. Administration of SJGQT(250 mg/kg) accelerated the subpopulation of splenic T lymphocytes especially CD/sup 4+/-TH cells in BALB/c mice. But high concentration(500 mg/kg) of SJGQT decreased the splenic T, B lymphocytes and thymic Tc (CD/sup 8+/) lymphocytes. Oral administration of SJGQT(250 mg/kg) significantly enhanced the production of IFN-γ and IL-4 in mice serum. And also, the addition of SJGQT(100 ㎍/ml) inhibited the proliferation of cultured-Jurkat leukemia cells in vitro. These results suggest that SJGQT have a cellular immuno-modulatory effect and anti-cancer property action

Effect of Electrical Stimulation Level on Quantitative Sensory Test Induced Erythema by UV Radiation (전기자극수준이 자외선에 의한 홍반의 정량적 감각검사에 미치는 효과)

  • Kim, Su-Hyon;Kim, Hyun-Jin
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Purpose : This study is to investigate the modulatory effects to the ultraviolet induced erythema of pain processing system. Methods : Thirty six healthy volunteers were divided into none treatment group (n=6), indomethacine group (n=6), subsensory level electrical stimulation group (n=6), sensory level electrical stimulation group (n=6), motor level electrical stimulation group (n=6), noxious level electrical stimulation group (n=6). Subjects were induced erythema for three times minimal erythema dose (MED) at upper arm of dermatome C6 level. Each experimental group had mechanical pain threshold (MPT), electrical pain threshold (EPT), thermal pain threshold (TPT). Results : This study revealed that we observed that pain thresholds were significantly correlated with each other in pain processing system. The effect of electrical stimulation levels evaluates were shown to be significant differences pain control effect in electrical stimulation group (sensory, motor level electrical stimulation groups) more than indomethacine group, subsensory level and control group. Conclusion : In this study, it was found that the effect of ultraviolet induced erythema of pain control by modulatory electrical stimulation.

Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells (BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.

Modulatory Activity of Bifidobacterium sp. BGN4 Cell Fractions on Immune Cells

  • Kim Nam-Ju;Ji Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.584-589
    • /
    • 2006
  • Bifidobacteria has been suggested to exert health promoting effects on the host by maintaining microbial flora and modulating immune functions in the human intestine. We assessed modulatory effects of the different cell fractions of Bifidobacterium sp. BGN4 on macrophage cells and other immune cells from the spleen and Peyer's patches (PP) of mouse. Cell free extracts (CFE) of the BGN4 fractions induced well-developed morphological changes in the macrophages and increased the phagocytic activity more effectively than other fractions in the mouse peritoneal cells. Nitric oxide (NO) production was significantly reduced by both the cell walls (CW) and CFE in the cultured cells from the spleen and PP. The production of interleukin-6 (IL-6) and interleukin-10 (IL-10) was eminent in the spleen cells treated with experimental BGN4 cell fractions. However, in the PP cells, IL-6 was slightly decreased by the treatment with the whole cell (WC) and CW, whereas IL-10 was significantly increased by the treatment with the CW and CFE. These results suggest that different types of bifidobacterial cell fractions may have differential immunomodulatory activities depending on their location within the host immune system.