• Title/Summary/Keyword: modulation codes

Search Result 179, Processing Time 0.027 seconds

Two-Dimensional 8/9 Error Correcting Modulation Code

  • Lee, Kyoungoh;Kim, Byungsun;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.215-219
    • /
    • 2014
  • In holographic data storage (HDS), a high transmission rate is accomplished through the use of a charge coupled device array for reading two-dimensional (2D) pixel image data. Although HDS has many advantages in terms of storage capacity and data transmission rates, it also features problems, such as 2D intersymbol interference (ISI) by neighboring pixels and interpage interference (IPI) by multiple images stored in the same holographic volume. Modulation codes can be used to remove these problems. We introduce a 2D 8/9 error-correcting modulation code. The proposed modulation code exploits the trellis-coded modulation scheme, and the code rate is larger (about 0.889) than that of the conventional 6/8 balanced modulation code (an increase of approximately 13.9%). The performance of the bit error rate (BER) with the proposed scheme was improved compared with that of the 6/8 balanced modulation code and the simple 8/9 code without the trellis scheme.

Modulation Codes for Holographic Digital Data Storage (홀로그래픽 정보 저장 장치의 Modulation 코드)

  • 박주연;황의석;조장현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.56-57
    • /
    • 2001
  • 정보화의 가속에 따라서, 막대한 정보를 저장하고 처리하기 위한 대용량 정보 저장 장치가 요구되어 지면서, 여러 대응 방법들이 제안되었고, 그중 하나가 HDDS (Holographic Digital Data Storage) 이다. 이는 2차원 페이지 정보를 3차원의 공간상에 저장함으로써 고밀도 저장 능력과 빠른 전송 속도를 실현할 수 있다는 장점이 있다. HDDS는 2차원의 고밀도 이진 영상을 기록하고 재생하는 과정에서 인접 신호의 영향(ISI)과 가우시안 잡음(AWGN) 등이 포함되어지기 때문에 정보 복원 시 에러가 발생할 수 있다. (중략)

  • PDF

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

An Analysis of Bit Error Probability of Reed-Solomon/Trellis concatenated Coded-Modulation System (Reed-Solomon/Trellis 연접 부호변조 시스템의 비트오율 해석)

  • 김형락;이상곤;문상재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.34-43
    • /
    • 1994
  • The unequal symbol error probability of TCM(trellis coded modulation) is analyzed and applied to the derivation of bit error probability of /RS/Trellis concatenated coded-modulation system. An upper bound of the symbol error probability of TCM concatenated with RS code is obtained by exploiting the unequal symbol error probability of TCM, and it is applied to the derivation of the upper bound of the bit error probability of the RS/Trellis concatenated coded-modulation system. Our upper bounds of the concatenated codes are tighter than the earlier established other upper bounds.

  • PDF

LLR Based Generalization of Soft Decision Iterative Decoding Algorithms for Block Turbo Codes (LLR 기반 블록 터보 부호의 연판정 복호 알고리즘 일반화)

  • Im, Hyun-Ho;Kwon, Kyung-Hoon;Heo, Jun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1026-1035
    • /
    • 2011
  • This paper presents generalization and application for the conventional SISO decoding algorithm of Block Turbo Codes. R. M. Pyndiah suggested an iterative SISO decoding algorithm for Product Codes, two-dimensionally combined linear block codes, on AWGN channel. It wascalled Block Turbo Codes. Based on decision of Chase algorithm which is SIHO decoding method, SISO decoder for BTC computes soft decision information and transfers the information to next decoder for iterative decoding. Block Turbo Codes show Shannon limit approaching performance with a little iteration at high code rate on AWGN channel. In this paper we generalize the conventional decoding algorithm of Block Turbo Codes, under BPSK modulation and AWGN channel transmission assumption, to the LLR value based algorithm and suggest an application example such as concatenated structure of LDPC codes and Block Turbo Codes.

Design and Performance Analysis of Nonbinary LDPC Codes With Low Error-Floors (오류 마루 현상이 완화된 비이진 LDPC 부호의 설계 및 성능 분석 연구)

  • Ahn, Seok-Ki;Lim, Seung-Chan;Yang, Youngoh;Yang, Kyeongcheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.852-857
    • /
    • 2013
  • In this paper we propose a design algorithm for nonbinary LDPC (low-density parity-check) codes with low error-floors. The proposed algorithm determines the nonbinary values of the nonzero entries in the parity-check matrix in order to maximize the binary minimum distance of the designed nonbinary LDPC codes. We verify the performance of the designed nonbinary LDPC codes in the error-floor region by Monte Carlo simulation and importance sampling over BPSK (binary phase-shift keying) modulation.

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF

Performance of Turbo Codes in the Direct Detection Optical PPM Channel (직접 검파 펄스 위치 변조 광통신 채널에서의 터보 부호의 성능)

  • 이항원;이상민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.570-579
    • /
    • 2003
  • The performance of turbo codes is investigated in the direct detection optical PPM channel. We assume that an ideal photon counter is used as an optical detector and that the channel has background noise as well as quantum noise. Resulting channel model is M-ary PPM Poisson channel. We propose the structure of the transmitter and receiver for applying turbo codes to this channel. We also derive turbo decoding algorithm for the proposed coding system, by modifying the calculation of the branch metric inherent in the original turbo decoding algorithm developed for the AWGN channel. Analytical bounds are derived and computer simulation is performed to analyze the performance of the proposed coding scheme, and the results are compared with the performances of Reed-Solomon codes and convolutional codes.

Polar Code Design for Nakagami-m Channel

  • Guo, Rui;Wu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3156-3167
    • /
    • 2020
  • One drawback of polar codes is that they are not universal, that is, to achieve optimal performance, different polar codes are required for different kinds of channel. This paper proposes a polar code construction scheme for Nakagami-m fading channel. The scheme fully considers the characteristics of Nakagami-m fading channel, and uses the optimized Bhattacharyya parameter bounds. The constructed code is applied to an orthogonal frequency division multiplexing (OFDM) system over Nakagami-m fading channel to prove the performance of polar code. Simulation result shows the proposed codes can get excellent bit error rate (BER) performance with successive cancellation list (SCL) decoding. For example, the designed polar code with cyclic redundancy check (CRC) aided SCL (L = 8) decoding achieves 1.1dB of gain over LDPC at average BER about 10-5 under 4-quadrature amplitude modulation (4QAM) while the code length is 1024, rate is 0.5.