• 제목/요약/키워드: modular equations

검색결과 50건 처리시간 0.024초

연산 모듈의 결합에 의한 $GF(2^m)$상의 병렬 승산 회로의 설계 (Design of Parallel Multiplier Circuit synthesized operation module over $GF(2^m)$)

  • 변기영;김흥수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.268-273
    • /
    • 2002
  • In this paper, a new parallel multiplier circuit over $GF(2^m)$ has been proposed. The new multiplier is composed of polynomial multiplicative operation part and modular arithmetic operation part, irreducible polynomial operation part. And each operation has modular circuit block. For design the new proposed circuit, it develop generalized equations using frame each operation idea and show a example for $GF(2^m)$.

  • PDF

PSS 정수 튜닝을 위한 전력시스템 미소신호 안정도 해석 프로그램 (Computer Analysis Program of Small-Signal Stability of Power System for Tuning PSS′s parameters)

  • 김동준;문영환;허진;신정훈;김태균;추진부
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권5호
    • /
    • pp.241-249
    • /
    • 2003
  • This paper describes a novel approach for performing eigenvalue analysis and frequency domain analysis of multi-machine power system. The salient feature of this approach is a direct approach for constructing the state matrix equations of linearized power systems about its operating point using modular technique. These state matrix equations are then used to obtain eigenvalues and mode shapes of the system, and frequency response, or Bode, plots of selected transfer functions. The proposed program provides a flexible tool for systematic analyses of tuning PSS's parameters. The paper also presents its application to the analyses of a single-machine infinite bus system and two-area system with 4 machines.

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제38권3호
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.

Pressure and Flow Distribution in the Inlet Plenum of a Pebble Bed Modular Reactor (PBMR)

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.244-249
    • /
    • 2005
  • Flow distribution and pressure drop analysis for an inlet plenum of a Pebble Bed Modular Reactor (PBMR) have been performed using Computational Fluid Dynamics. Three-dimensional Navier-Stokes equations have been solved in conjunction with $k-{\epsilon}$ model as a turbulence closure. Non-uniformity in flow distribution is assessed for the reference case and parametric studies have been performed for rising channels diameter, Reynolds number and angle between the inlet ports. Also, two different shapes of the inlet plenum namely, rectangular shape and oval shape, have been analysed. The relative flow mal-distribution parameter shows that the flow distribution in the rising channels for the reference case is strongly non-uniform. As the rising channels diameter decreases, the uniformity in the flow distribution as well as the pressure drop inside the inlet plenum increases. Reynolds number is found to have no effect on the flow distribution in the rising channels for both the shapes of the inlet plenum. The increase in angle between the inlet ports makes the flow distribution in the rising channels more uniform.

  • PDF

미세조직기반 구성모델을 이용한 고크롬강의 크리프 거동 해석 (Creep Behavior Analysis of High Cr Steel Using the Constitutive Model Based on Microstructure)

  • 윤승채;서민홍;백경호;김성호;류우석;김형섭
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.160-167
    • /
    • 2004
  • In order to theoretically analyze the creep behavior of high Cr steel at $600^{\circ}C$, a unified elasto-viscoplastic constitutive model based on the consideration of dislocation density is proposed. A combination of a kinetic equation describing the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provides the constitutive equations of the model. Microstructural features of the material such as the grain size and spacing between second phase particles are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in a simple model. The model has a modular structure and can be adjusted to describe a creep behavior using the material parameters obtained from uniaxial tensile tests.

미세조직학적 변수를 고려한 합금의 구성모델링 (Constitutive Modelling of Alloys Implementing Microstructural Variables)

  • 김형섭;김성호;류우석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2002
  • A unified elastic-viscoplastic ocnstitutive model based on dislocation density considerations is described. A combination of a kinetic equation, which describes the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provide the constitutive equations of the Model. Microstructural features of the material, such as the grain size, spacing between second phase particles etc., are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in the simple version of the model. The model has a modular structure and can be adjusted to describe a particular type of metal forming processes.

  • PDF

Jordan 형식을 이용한 공개키 암호체계 (Public Key Cryptosystem Based on Jordan Form)

  • 이희정
    • 정보보호학회논문지
    • /
    • 제15권4호
    • /
    • pp.101-105
    • /
    • 2005
  • 2002년 Zheng은 대각행렬을 이용한 공개키 암호시스템을 소개하였다. 그러나 이 시스템은 근본적으로 안전성에 문제가 있었다. 이러한 문제점을 보완한 새로운 공개키 암호시스템을 소개하려고 한다. 이 시스템은 합성수 상의 합동다항식의 해를 구하는 것과 조르단 형식의 행렬을 이용한다.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.