• Title/Summary/Keyword: modified protein

Search Result 696, Processing Time 0.028 seconds

Novel sinIR promoter for Bacillus subtilis DB104 recombinant protein expression system

  • Ji-Su Jun;Min-Joo Kim;KwangWon Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.128-137
    • /
    • 2023
  • Transcriptome analysis revealed that the sinR gene encoding a transition-state regulator of Bacillus pumilus, genetically close to B. subtilis, was expressed at high levels during growth. The sinR gene is the second gene of the sinIR operon consisting of three promoters and two structural genes in B. subtilis. This study used the sinIR promoter of B. subtilis DB104 to construct a recombinant protein expression system. First, the expression ability depending on the number of sinIR promoter was investigated using enhanced green fluorescent protein (eGFP). The expression level of eGFP was slightly higher when using two promoters (Psin2) than using original promoters. The Psin2 promoter was further engineered by modifying the repressor binding site and -35 and -10 regions. Shine-Dalgarno (SD) sequence of the sinI gene was modified to the consensus sequence. Finally, combining the engineered Psin2 promoter with the modified SD sequence increased the expression level of eGFP by about 13.4-fold over the original promoter. Our results suggest that the optimized sinIR promoter could be used as a novel tool for recombinant protein expression in B. subtilis.

Minimally Complex Problem Set for an Ab initio Protein Structure Prediction Study

  • Kim RyangGug;Choi Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.414-418
    • /
    • 2004
  • A 'minimally complex problem set' for ab initio protein Structure prediction has been proposed. As well as consisting of non-redundant and crystallographically determined high-resolution protein structures, without disulphide bonds, modified residues, unusual connectivities and heteromolecules, it is more importantly a collection of protein structures. with a high probability of being the same in the crystal form as in solution. To our knowledge, this is the first attempt at this kind of dataset. Considering the lattice constraint in crystals, and the possible flexibility in solution of crystallographically determined protein structures, our dataset is thought to be the safest starting points for an ab initio protein structure prediction study.

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

Modification of nutrition strategy for improvement of postnatal growth in very low birth weight infants

  • Choi, Ah Young;Lee, Yong Wook;Chang, Mea-young
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.4
    • /
    • pp.165-173
    • /
    • 2016
  • Purpose: To identify the effects of modified parenteral nutrition (PN) and enteral nutrition (EN) regimens on the growth of very low birth weight (VLBW) infants. Methods: The study included VLBW infants weighing <1,500 g, admitted to Chungnam National University Hospital between October 2010 and April 2014, who were alive at the time of discharge. Subjects were divided according to 3 periods: period 1 (n=37); prior to the PN and EN regimen being modified, period 2 (n=50); following the PN-only regimen modification, period 3 (n=37); following both PN and EN regimen modification. The modified PN regimen provided 3 g/kg/day of protein and 1 g/kg/day of lipid on the first day of life. The modified EN regimen provided 3.5-4.5 g/kg/day of protein and 150 kcal/kg/day of energy. We investigated growth rate, anthropometric measurements at 40 weeks postconceptional age (PCA) and the incidence of extrauterine growth restriction (EUGR) at 40 weeks PCA. Results: Across the 3 periods, clinical characteristics, including gestational age, anthropometric measurements at birth, multiple births, sex, Apgar score, surfactant use and PDA treatment, were similar. Growth rates for weight and height, from time of full enteral feeding to 40 weeks PCA, were higher in period 3. Anthropometric measurements at 40 weeks PCA were greatest in period 3. Incidence of weight, height and head circumference EUGR at 40 weeks PCA decreased in period 3. Conclusion: Beginning PN earlier, with a greater supply of protein and energy during PN and EN, is advantageous for postnatal growth in VLBW infants.

Characteristics of Protein G-modified BioFET

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.226-229
    • /
    • 2011
  • Label-free detection of biomolecular interactions was performed using BioFET(Biologically sensitive Field-Effect Transistor) and SPR(Surface Plasmon Resonance). Qualitative information on the immobilization of an anti-IgG and antibody-antigen interaction was gained using the SPR analysis system. The BioFET was used to explore the pI value of the protein and to monitor biomolecular interactions which caused an effective charge change at the gate surface resulting in a drain current change. The results show that the BioFET can be a useful monitoring tool for biomolecular interactions and is complimentary to the SPR system.

Free Radicals during the Oxidation and Reduction of Methylglyoxal-Modified Protein

  • Lee, Cheolju;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.36-36
    • /
    • 1997
  • Protein glycation was studied with bovine serum albumin (BSA) as a model protein and methylglyoxal, a 3-carbon ${\alpha}$-ketoaldehyde. Methylglyoxal reacted with BSA, forming a radical as observed in the reaction of methylglyoxal wtih L-alanine or N-acetyl-L-lysine.(omitted)

  • PDF

Optimizing Recipes of Mung Bean Pancake for Teenagers

  • Lee, Jin-Wha;Shin, Eun-Soo;Ryu, Hong-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.340-347
    • /
    • 2010
  • To standardize the recipes for healthy fast food market potentiality, a sensory acceptability analysis, instrumental texture analysis and nutritional evaluation were performed on Korean style mung bean pancake (MPC) and modified MPC containing squid meat and soybean. Optimal ingredient formulation was revealed to be 34% mung bean, 49% pork and 17% vegetables for traditional MPC, and 21% pork, 66% squid meat and 13% soybean for modified MPC, using response surface methodology. Flavor and hardness correlated highly with overall acceptability, rather than appearance and color of traditional MPC. Higher squid levels raised adhesiveness, springiness and resilience of modified MPC, but the higher soybean levels decreased these textural attributes. Protein, lipid and total calories of modified MPC were lower than those of traditional MPC. Degree of gelatinization of modified MPC was superior to traditional MPC.

Single-dose Oral Toxicity Study of β-glucosidase 1 (AtBG1) Protein Introduced into Genetically Modified Rapeseed (Brassica napus L.) (GM 유채에 도입된 β-glucosidase 1 (AtBG1)의 단회투여독성시험)

  • Lee, Soonbong;Jeong, Kwangju;Jang, Kyung-Min;Kim, Sung-Gun;Park, Jung-Ho;Kim, Shinje
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.194-201
    • /
    • 2017
  • Rapeseed (Brassica napus L.) is an oil crop classified as Brassicaceae, and it is widely grown worldwide. To develop a drought-resistant rapeseed, the ${\beta}$-glucosidase 1 (AtBG1) gene was introduced into rapeseed because drought- and salt-resistance phenotypes were observed when the AtBG1 gene was overexpressed in arabidopsis. Newly developed genetically modified crop must be proved to be safe. Safety assessments are based on the historical usage and scientific reports of a crop. In this study, we examined the potential acute oral toxicity of AtBG1 protein expressed in genetically modified (GM) rapeseed and calculated the minimum lethal dose at 6 weeks in both male and female ICR mice. AtBG1 protein was fed at a dose of 2,000 mg/kg body weight in five male and five female mice according to the marginal capacity concentration of OECD, 2,000 mg/15 ml/kg. Mortalities, clinical findings, and body weight changes were monitored for 14 days after dosing, and postmortem necropsy was performed on day 14. This study showed that no deaths occurred in the test group, and AtBG1 protein did not result in variations in common symptoms, body weight, and postmortem findings between the two groups. This showed that the minimum lethal dose of AtBG1 protein expressed in transgenic rapeseed exceed 2,000 mg/kg body weight in both sexes.

Fluorescence Quenching of Green Fluorescent Protein during Denaturation by Guanidine

  • Jung, Ki-Chul;Park, Jae-Bok;Maeng, Pil-Jae;Kim, Hack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.413-417
    • /
    • 2005
  • Fluorescence of green fluorescent protein mutant, 2-5 GFP is observed during denaturation by guanidine. The fluorescence intensity decreases exponentially but the fluorescence lifetime does not change during denaturation. The fluorescence lifetime of the denatured protein is shorter than that of native form. As the protein structure is modified by guanidine, solvent water molecules penetrate into the protein barrel and protonate the chromophore to quench fluorescence. Most fluorescence quenchers do not affect the fluorescence of native form but accelerate the fluorescence intensity decay during denaturation. Based on the observations, a simple model is suggested for the structural change of the protein molecule during denaturation.

Hsp27 Reduces Phosphorylated Tau and Prevents Cell Death in the Human Neuroblastoma Cell Line SH-SY5Y

  • Ahn, Junseong;Kim, Hyeseon;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1503-1507
    • /
    • 2013
  • The two major symptoms characterizing Alzheimer's disease are the formation of amyloid-${\beta}$ extracellular deposits in the form of senile plaques and intracellular neurofibrillary tangles (NFTs) that consist of pathological hyperphosphorylated tau protein aggregated into insoluble paired helical filaments (PHFs). Neurons of the central nervous system have appreciable amounts of tau protein, a microtubule-associated protein. To maintain an optimal operation of nerves, the microtubules are stabilized, which is necessary to support cell structure and cellular processes. When the modified tau protein becomes dysfunctional, the cells containing misfolded tau cannot maintain cell structure. One of the pathological hallmarks of Alzheimer's disease is hyperphosphorylated tau protein. This paper shows that the small heat shock protein from humans (Hsp27) reduces hyperphosphorylated tau and prevents hyperphosphorylated tau-induced cell death of the human neuroblastoma cell line SH-SY5Y.