• Title/Summary/Keyword: modified magnet

Search Result 67, Processing Time 0.025 seconds

Fundamental study on sustainable treatment system of mine water using magnetized solid catalyst

  • Mukuta, Chisato;Akiyama, Yoko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • In the mine exploration sites, sustainable treatment system of mine water with energy saving and minimized chemical additives is required. Since most of the mine water contains highly-concentrated ferrous ion, it is necessary to study on the removal method of iron ions. We propose the system consisting of two processes; precipitation process by air oxidation using solid catalyst-modified magnetite and separation process combining gravitational sedimentation and magnetic separation using a permanent magnet. Firstly, in the precipitation process (a former process of the system), we succeeded to prepare solid catalyst-modified magnetite. Air oxidation using solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material showed high iron removal capability. Secondly, in the separation process (latter process of the system), solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material can be separated by a superconducting bulk magnet and a permanent magnet.

Study of the Enhancement of Magnetic Properties of NdFeB Materials Fabricated by Modified HDDR Process

  • Fu, Meng;Lian, Fa-zeng;Wang, jie-Ji;Pei, Wen-Ii;Chen, Yu-lan;Yang, Hong-cai
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.109-112
    • /
    • 2004
  • The HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) process is a special method to produce anisotropic NdFeB powders for bonded magnet. The effect of the modified HDDR process on magnetic properties of $Nd_2Fe_{14}B$-based magnet with several composition $Nd_{11.2}Fe_{66.5-x}Co_{15.4}B_{6,8}Zr{0.1}Ga_x(x=0{\sim}1.0)$ and that of microelement Ga, disproportional temperature and annealing temperature on $_jH_c$, grain size were investigated in order to produce anisotropic powder with high magnetic properties. It was found that modified HDDR process is very effective to enhance magnetic properties and to fine grain size. The addition of Ga could change disproportionation character remarkably of the alloy and could improve magnetic properties of magnet powder. Increasing annealing temperature induces significant grain growth. And grain size produced by modified HDDR process is significantly smaller than those produced by conventional HDDR process.

Analysis and Application of a Hybrid Motor Structure Convenient to Modify the Magnet and Reluctance Torques on the Rotor

  • Beser, Esra Kandemir;Camur, Sabri;Arifoglu, Birol;Beser, Ersoy
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.349-357
    • /
    • 2012
  • This paper presents a hybrid motor prototype convenient to modify the magnet and reluctance torques. The rotor of the prototype consists of magnet and reluctance parts, so the generated torque includes both magnet and reluctance torques. A considerable feature of the motor is that the ratio of the magnet and reluctance parts can be modified on the rotor and the rotor hybridization ratio can be varied. Another important point is the mechanical angle between the parts changed by means of the suitable construction of the parts on the rotor shaft. Finite element (FE) analysis was carried out for the proposed motor and static torque measurements were realized. The FE results were compared with the experimental results. Average torque and maximum torque values were obtained and three dimensional 3-D graphs were formed by using the experimental data. It is possible to make different combinations by changing the parts and the angle between the parts due to the proposed motor. So the magnet and reluctance torques are modified and different combinations give different torque behavior.

Magnetic Properties and Microstructure of Nanocrystalline NdFeB Magnets Fabricated by a Modified Hot Working Process

  • Kim, Hyoung-Tae;Kim, Yoon-Bae;Jeon, Woo-Yong;Kim, Hak-Shin
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.138-142
    • /
    • 2002
  • Magnetic properties, microstructure and texture of NdFeB magnets fabricated by a modified hot working process from commercial melt-spun powders (Magnequench; MQPA, MQPB and MQPB+) have been investigated. The hot-pressed isotropic magnet made from MQPA powder, which contains higher Nd content than that of MQPB or MQPB+, shows higher coercivity. The magnet also shows homogenous and fine grains with higher coercivity for higher consolidation pressure. The hot-deformed MQPA magnet shows a strong anisotropy along the press direction with homogeneous platelet Nd$_2$Fe$_{14}$B grains of 50∼100nm in thickness and 200∼500nm in length. The hot-deformed MQPB+ magnet, however, shows low remanence and low coercivity. The microstructure of the magnet consists of two areas; undeformed Nd$_2$Fe$_{14}$B grains and well-aligned but large grains with 3∼4 $\mu$m in length. Low Nd content attributes to the formation of the two different area.

Design of a kW-class PM Generators for Wind Turbine (kW급 풍력 발전기 설계)

  • Lee, Soohoh;Kim, Geohwa;Won, Junghyun;Kim, Dong-Eon;Park, H.C.;Chung, Chinwha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.179.2-179.2
    • /
    • 2010
  • This research has been performed to provide fundamental design aspects of Permanent Magnet Synchronous Generators(PMSGs) for a kilowatt class wind turbine. When it comes to kilowatt class wind turbines, the typical type of generators are Axial Flux Permanent Magnet(AFPM) generators. However, Radial Flux Permanent Magnet(RFPM) generators have been optimally designed to study the output characteristics of a kilowatt class wind turbine in Graduate School of Wind Energy, POSTECH. An existing squirrel-cage rotor has been modified for another newly designed permanent magnet rotor to utilize the commercially existing stator rotor. Electromagnetic analysis utilizing Finite Element Methods tools(ANSYS, MAXWELL 2D) has been applied to analyze the system.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Optimal ECO-Design of Permanent Magnet Brushless DC Motor Using Modified Tabu Search Optimizer and Finite Element Analysis

  • Yazdani-Asrami, Mohammad;Alipour, Mohammad;Gholamian, S. Asghar
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.161-165
    • /
    • 2015
  • The Permanent Magnet Brushless DC (PMBLDC) motors have been used in modern industrial factories, hazardous chemical process, modern medical devices, and especially in advanced military devices such as army drones. By considering their sensitive role in the industrial and military applications, their optimal design has a real concern. This paper proposes a method for optimal eco-design of a PMBLDC motor using improved tabu search optimization. The objective function is based on losses, volume and cost. Electrical and mechanical requirements and other limitations are combined into constraints of problem. Also, finite element analysis has been used for verifications in magnetic mode.

A Backstepping Control of LSM Drive Systems Using Adaptive Modified Recurrent Laguerre OPNNUO

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.598-609
    • /
    • 2016
  • The good control performance of permanent magnet linear synchronous motor (LSM) drive systems is difficult to achieve using linear controllers because of uncertainty effects, such as fictitious forces. A backstepping control system using adaptive modified recurrent Laguerre orthogonal polynomial neural network uncertainty observer (OPNNUO) is proposed to increase the robustness of LSM drive systems. First, a field-oriented mechanism is applied to formulate a dynamic equation for an LSM drive system. Second, a backstepping approach is proposed to control the motion of the LSM drive system. With the proposed backstepping control system, the mover position of the LSM drive achieves good transient control performance and robustness. As the LSM drive system is prone to nonlinear and time-varying uncertainties, an adaptive modified recurrent Laguerre OPNNUO is proposed to estimate lumped uncertainties and thereby enhance the robustness of the LSM drive system. The on-line parameter training methodology of the modified recurrent Laguerre OPNN is based on the Lyapunov stability theorem. Furthermore, two optimal learning rates of the modified recurrent Laguerre OPNN are derived to accelerate parameter convergence. Finally, the effectiveness of the proposed control system is verified by experimental results.

A Low Cogging Force Permanent Magnet Linear Motor Having 3 Phase 9 Pole 10 Slot Structure (코깅력이 저감된 3상 9극 10슬롯 구조의 영구자석 선형 전동기)

  • Youn, Sung-Whan;Lee, Jong-Jin;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.547-554
    • /
    • 2006
  • The detent force of a permanent magnet linear motor(PMLM) consists of the end force and cogging force, and should be reduced for high precision purpose applications. The cogging force comes from the electromagnetic interaction between the permanent magnets and interior teeth(or the slots) of the stator, and of which the magnitude depends on the ratio of the numbers of the armature and permanent magnet poles as well as the geometrical shape of the permanent magnet and armature pole. In order to reduce the cogging force of a PMLM, this paper proposes a new configuration which has 9 permanent magnet poles and 10 armature winding slots. By theoretical investigation of the principle of cogging force generation and simulating using finite element method, the proposed PMLM configuration is proven to give much less cogging force than the conventional configuration which has 8 permanent magnet poles and 12 armature winding slots. A proper winding algorithm, modified (A, A, A) winding method, for the proposed configuration is also suggested when the proposed PMLM is operating as a 3 phase synchronous machine. A theoretical and numerical calculation shows that the proposed configuration makes slightly bigger back-emf and thrust force under same exciting current and total number of winding turns condition.

Design of the Modified PID Speed Controller to Reduce the Speed Ripple (속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.