• Title/Summary/Keyword: modified emulsion

Search Result 128, Processing Time 0.044 seconds

Effect of Physical Characteristics of Emulsion Asphalt and Aggregate on Performance of Chip Seal Pavements (유화아스팔트 바인더와 골재 특성이 칩씰 포장의 공용성에 미치는 영향 연구)

  • Hong, Ki Yun;Kim, Tae Woo;Lee, Hyun Jong;Park, Hee Mun;Ham, Sang Min
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the effect of physical characteristics of emulsion asphalt and aggregate on performance of chip seal pavements. METHODS : In order to evaluate the performance of chip seal materials, the sweep tests and Vialit Plate Shock tests were conducted on the mixtures with five emulsion asphalt binders and three aggregate types. The sweep tests was intended to investigate the change of bonding properties between emulsion asphalt and aggregate with curing time. The Vialit Plate Shock test was used to evaluate the bonding properties of chip seal materials at low temperatures. RESULTS : Results from sweep tests showed that polymer modified emulsion asphalt can reduce the curing time by 1.5 hour comparing with typical emulsion asphalt. It is also found that the Flakiness Index of aggregates and absorption rate of binder are the major factors affecting the bonding properties of chip seal materials. The Vialit Plate Shock test results showed that the average aggregate loss of CRS-2 is ten times higher than CRS-2P No.2 indicating that the use of polymer additives in emulsion asphalt can improve the performance of chip seal materials in low temperature region. CONCLUSIONS : The use of polymer in emulsion asphalt can decrease the curing time of chip seal materials and increase the bonding properties between aggregates and asphalt binder. It is also concluded that the lower Flakiness Index and absorption rate of aggregates can improve the performance of chip seal pavement.

Performance Evaluation of Surface Treatments for Asphalt Pavement Preservation (아스팔트 도로포장 유지보수용 표면처리공법의 공용성 평가)

  • Im, Jeong Hyuk;Kim, Y. Richard;Back, Cheolmin
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.89-98
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the performance properties of chip seals and fog seals with polymer-modified emulsions. METHODS : The performance of chip seals and fog seals was evaluated on the basis of common issues in surface treatments. Granite aggregate and four types of asphalt emulsions (one of the unmodified and three of the modified emulsions) were used considering the usage in field. A Vialit test was performed to determine the aggregate retention, and the MMLS3 (Third Scale Model Mobile Load Simulator) test was conducted to determine the aggregate retention, bleeding, and rutting. In addition, the fog seal specimens were tested by the BPT (British Pendulum Test) to evaluate skid resistance. RESULTS AND CONCLUSIONS : Overall, the polymer-modified emulsions (PMEs) showed better aggregate retention and bleeding resistance for both chip seals and fog seals. When comparing the performance of the PMEs, the difference was not considerable. In addition, PMEs present significantly better rutting resistance than unmodified emulsions. For skid resistance, if the recommended mix design is applied, the specimens do not cause issues with skid resistance. Although all of the fog seal specimens were over the criteria for skid resistance, the specimen fabricated by the high emulsion application rate (EAR) of the unmodified emulsion was nearly equivalent to the skid value criteria. Therefore, the use of an unmodified emulsion with a high EAR should be carefully applied in the field.

Evaluation of Asphalt Emulsions Curing and Adhesive Behavior used in Asphalt Pavement Preservation (Surface Treatments) (아스팔트 도로포장 유지보수(표면처리)용 유화아스팔트의 양생 및 점착거동특성 평가)

  • Im, Jeong Hyuk;Kim, Y. Richard
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.39-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the curing and adhesive behavior of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals. METHODS : For the laboratory testing, the evaporation test, the bitumen bond strength (BBS) test, and the Vialit test are used. Also, the rolling ball test and the damping test are employed to evaluate the curing properties of the fog seal emulsions. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions (FPME-1 and FPME-2) and one of unmodified emulsion, the CSS-1H, are employed. All the tests are performed at different curing times and temperatures. RESULTS AND CONCLUSIONS : Overall, PMEs show better curing and adhesive behavior than non-PMEs regardless of treatments types. Especially, the curing and adhesive behavior of PMEs is much better than non-PMEs before 120 minutes of curing time. Since all the test results indicate that after 120 minutes of curing time the curing adhesive behavior of emulsions, the early curing time, i.e., 120 minutes, plays an important role in the performance of chip seals and fog seals.

The Study on the Properties of Polymer Emulson Modified Mortar -Effects of Polyacrylicacid Ester and Polystyrene Modified Mortar- (고분자에말죤의 첨가에 따른 시멘트모르터의 특성에 관한 연구 -Polyacrylicacid Ester 및 Polystyrene 에말죤의 첨가영향-)

  • 김창은;최강순
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.4
    • /
    • pp.9-18
    • /
    • 1975
  • Polymer emulsion was used as the admixture for the purpose of increasing the mechanical properties of cement mortar. The effect of polymer emulsion admixture on compressive strength and tensile strength and chemical resistance, relative humidity on compressive and tensile strength, sand particles on water absorption were studied. The results were as follows. 1. Polymer emulson modified mortar cured under 95% of realative humidity showed lower strength than the mortar cured at dry condition. 2. The maximum strength was attained at 10~20% of polystyrene and polyacrylic acid ester polymer-cement mortar. 3. The modified mortar (sand size rate (-9+35)mech:(-35+60)mech=4 : 1) was 1.5 times lower than the modified mortar (1 : 1) in water absorption. 4. Compared with the ordinary mortar, the modified mortar showed 2~3 times greater chemical resistance for 5% HCl or 5% H2SO4.

  • PDF

Study on Early Adhesive Characteristic of Chip Seals Using a Surface Energy Approach (표면 에너지 원리를 이용한 칩실 포장의 초기 점착력 특성 연구)

  • Im, Jeong Hyuk
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.47-54
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the early adhesive characteristic of asphalt emulsions, including polymer-modified emulsions, for chip seals using the surface energy concept, the bitumen bond strength (BBS) test, and the Vialit test. METHODS : Two general methods, the BBS test and Vialit test, were applied to investigate the bond strength and the aggregate loss, respectively. A new theory, the surface free energy (SFE) theory, was used to evaluate the adhesive characteristic between the emulsion and the aggregate. Based on the theory, the contact angles were measured, and then the surface energy components were calculated. Using those components, the work of adhesion (Wa) was calculated for each emulsion. To ensure reliable results, all the tests were performed under the same conditions, i.e., at $25^{\circ}C$ for 240 minutes of curing time. For the materials, three emulsions (CRS-2, CRS-2L, and CRS-2P) and one aggregate type (granite) were employed. RESULTS AND CONCLUSIONS : Under the same conditions, the modified emulsions showed better adhesive characteristics and curing behaviors than the unmodified emulsions. In addition, there was no significant difference between the various modified emulsions. One of the important findings is that the analysis by Wa presents more sensitive results than other methods. The results of the Wa showed that the CRS-2P emulsion has the best adhesive characteristics. Consequently, the use of modified emulsions for chip seals could prevent aggregate loss and allow open traffic earlier.

Synthesis and Emulsion Properties of Self-emulsifiable Polyethylene Waxes (자기유화 폴리에틸렌 왁스의 합성 및 에멀젼 특성 연구)

  • Yang, Jeongin;Lee, Sangjun;Shin, Jihoon;Han, Won Hee;Hong, Min Hyuk;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.670-678
    • /
    • 2017
  • Self-emulsifiable polyethylene (PE) wax was prepared using acrylic acid grafted PE wax with potassium hydroxide and various emulsifiers for the economic production of PE wax emulsion. Modification reaction completion was confirmed that the peak from carbonyl group of acrylic acid disappeared and the new peak from carboxylic acid salts appeared in the FT-IR (Fourier transform infrared) spectrum data. Self-emulsifiable properties of the modified PE wax were investigated by the emulsion size and the stability of wax emulsion without any additional emulsifiers. According to self-emulsifiable properties, the emulsion size and stability were varied on the concentration and structure of the emulsifier. The greater emulsion concentration and hydrophilic poly(ethylene oxide) (PEO) characteristics of the emulsifier resulted in the smaller emulsion size and better emulsion stability. In addition, the use of emulsifiers mixture was more effective to obtain smaller size and uniform distribution of emulsion than that of single emulsifier in PE wax modification reaction. Especially, modified PE wax with OAE-5 and LAE-15 emulsifiers mixture shows excellent performance in terms of the smallest emulsion size ($4.34{\mu}m$) and emulsion stability.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Water Resistance and Thermal Properties of Resin Based on Silane-modified Vinyl Acetate-Acrylic Emulsion Copolymers (실리콘 수식 비닐아세테이트-아크릴 공중합체 수지의 방수성 및 열적 성질)

  • Naghash, Hamid Javaherian
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • Triphenylvinylsilane (TPVS) containing vinyl acetate (VAc), butyl acrylate (BA), and Nmethylolacrylamide (NMA) copolymers were prepared by emulsion polymerization. The polymerization was performed at $80^{\circ}C$ in the presence of auxiliary agents and ammonium peroxodisulfate (APS) as the initiator. Sodium dodecyl sulphate (SDS) and Arkupal N-300 were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and dynamic light scattering (DLS). Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of silicone concentrations on the properties of the TPVS-containing VAc-acrylic emulsion copolymers were discussed. The obtained copolymers have high solid content (50%) and can be used in weather resistant emulsion paints as a binder.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

Quality improvement of surimi gel from fish with a red muscle by emulsion curd containing a modified fish skin gelatin (수식 어류껍질 젤라틴 유화물에 의한 적색육어류 연제품의 품질개선)

  • Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.361-367
    • /
    • 1996
  • As a part of investigation for quality improvement of surimi gel from fish with a red muscle by addition of emulsion curd, we investigated the processing conditions of emulsion curd contained succinylated gelatin from conger eel skin as an emulsifier and emulsion curd-added surimi gel. Activity and stability of emulsion curd on standing at room temperature, chilled temperature and vibration were remarkably improved by the addition of 15 tunes of soybean oil and 5 times of water to succinylated gelatin from conger eel skin. The proximate composition of the emulsion curd was moisture 18%, protein 5%, lipid 76% and ash 0.5% and its appearance was white. Peroxide value and fatty acid composition of emulsion curd contained succinylated gelatin as an emulsifier were similar to these of soybean oil. By the addition of 6% of emulsion curd to mackerel surimi, gel strength, appearance and texture of the resulting surimi gel were improved, while its peroxide value and brown pigment revealed minor change. From the results of volatile basic nitrogen, viable cell counts and histamine content, the emulsion curd-added mackerel surimi gel can be safe In the sense of food sanitation.

  • PDF