• 제목/요약/키워드: modified embedded element

검색결과 19건 처리시간 0.02초

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

9 절점 가정변형률 쉘 요소를 이용한 전기-기계연성 시스템 해석 (Analysis of coupled electro-mechanical system by using a nine-node assumed strain shell element)

  • 이상기;박훈철;윤광준;조창민
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.25-34
    • /
    • 2003
  • 본 논문에서는 압전 작동기가 삽입되거나 부착된 구조를 해석하기 위하여, 기존의 기계적 문제만을 고려한 9 절점 가정변형률 쉘 요소의 정식화를 전기-기계연성 문제에도 적용 가능하도록 확장하였다. 본 쉘요소는 잠김현상을 완화할 수 있고, 두께변형을 고려하기 위해 각 절점에서 6개의 자유도를 갖는 특징이 있다. 전기-기계 자유도들은 구성방정식을 이용하여 연계시켰다. 변위장은 요소의 전체 두께방향으로 선형으로 가정하였고, 전기적 포텐셜은 각각의 압전재료층에 대해 선형으로 가정하였다. 확장된 정식화에 기초한 유한요소 프로그램을 개발하였고, 수치예제들을 통해 프로그램을 검증하였다. 개발된 쉘 요소에 의한 결과는 다른 참고문헌들의 결과들과 잘 일치하였다.

Use of bivariate gamma function to reconstruct dynamic behavior of laminated composite plates containing embedded delamination under impact loads

  • Lee, Sang-Youl;Jeon, Jong-Su
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.1-11
    • /
    • 2019
  • This study deals with a method based on the modified bivariate gamma function for reconstructions of dynamic behavior of delaminated composite plates subjected to impact loads. The proposed bivariate gamma function is associated with micro-genetic algorithms, which is capable of solving inverse problems to determine the stiffness reduction associated with delamination. From computing the unknown parameters, it is possible for the entire dynamic response data to develop a prediction model of the dynamic response through a regression analysis based on the measurement data. The validity of the proposed method was verified by comparing with results employing a higher-order finite element model. Parametric results revealed that the proposed method can reconstruct dynamic responses and the stiffness reduction of delaminated composite plates can be investigated for different measurements and loading locations.

Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC

  • Zhu, Xiangyi;Chen, Xudong;Lu, Jun;Fan, Xiangqian
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.527-539
    • /
    • 2019
  • In this paper, the fracture characteristics of concrete specimens with different notch depths under three-point flexural loads are studied by finite element and fracture mechanics methods. Firstly, the concrete beams (the size is 700×100×150 mm) with different notch depths (a=30 mm, 45 mm, 60 mm and 75 mm respectively) are tested to study the influence of notch depths on the mechanical properties of concrete. Subsequently, the concrete beams with notch depth of 60 mm are loaded at different loading rates to study the influence of loading rates on the fracture characteristics, and digital image correlation (DIC) is used to monitor the strain nephogram at different loading rates. The test results show that the flexural characteristics of the beams are influenced by notch depths, and the bearing capacity and ductility of the concrete decrease with the increase of notch depths. Moreover, the peak load of concrete beam gradually increases with the increase of loading rate. Then, the fracture energy of the beams is accurately calculated by tail-modeling method and the bilinear softening constitutive model of fracture behavior is determined by using the modified fracture energy. Finally, the bilinear softening constitutive function is embedded into the finite element (FE) model for numerical simulation. Through the comparison of the test results and finite element analysis, the bilinear softening model determined by the tail-modeling method can be used to predict the fracture behavior of concrete beams under different notch depths and loading rates.

Nonlinear analysis of prestressed concrete structures considering slip behavior of tendons

  • Kwak, Hyo-Gyoung;Kim, Jae-Hong;Kim, Sun-Hoon
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.43-64
    • /
    • 2006
  • A tendon model that can effectively be used in finite element analyses of prestressed concrete (PSC) structures with bonded tendons is proposed on the basis of the bond characteristics between a tendon and its surrounding concrete. Since tensile forces between adjacent cracks are transmitted from a tendon to concrete by bond forces, the constitutive law of a bonded tendon stiffened by grouting is different from that of a bare tendon. Accordingly, the apparent yield stress of an embedded tendon is determined from the bond-slip relationship. The definition of the multi-linear average stress-strain relationship is then obtained through a linear interpolation of the stress difference at the post-yielding stage. Unlike in the case of a bonded tendon, on the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. The tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. The validity of the proposed two tendon models is verified through correlation studies between analytical and experimental results for PSC beams and slabs.

Pseudostatic analysis of bearing capacity of embedded strip footings in rock masses using the upper bound method

  • Saeed Shamloo;Meysam Imani
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.381-396
    • /
    • 2023
  • The present paper evaluates seismic bearing capacity of rock masses subjected to loads of strip footings using the upper bound method. A general formula was proposed to evaluate the seismic bearing capacity considering both the horizontal and vertical accelerations of the earthquake and the effects of footing embedment depth simultaneously. Modified Hoek-Brown failure criterion was employed for the rock mass. Some comparisons were made with the available solutions and the finite element numerical models to show the accuracy of the developed upper bound formulations. The obtained results show significant improvement compared to the other available solutions. By increasing the horizontal earthquake acceleration from 0.1 to 0.3, the bearing capacity was reduced by up to 39%, while the effect of the vertical earthquake acceleration depends on its direction. An upward acceleration in the range of zero to 0.2 results in an increase in the bearing capacity by up to 24%, while the downward earthquake acceleration has an adverse effect. Also, by increasing the embedment depth of the footing from zero to 5 times the footing width, the value of seismic bearing capacity was raised about 86%. The obtained results were presented as design tables for use in practical applications.

Behaviour and design of stainless steel shear connectors in composite beams

  • Yifan Zhou;Brian Uy;Jia Wang;Dongxu Li;Xinpei Liu
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.175-193
    • /
    • 2023
  • Stainless steel-concrete composite beam has become an attractive structural form for offshore bridges and iconic high-rise buildings, owing to the superior corrosion resistance and excellent ductility of stainless steel material. In a composite beam, stainless steel shear connectors play an important role by establishing the interconnection between stainless steel beam and concrete slab. To enable the best use of high strength stainless steel shear connectors in composite beams, high strength concrete is recommended. To date, the application of stainless steel shear connectors in composite beams is still very limited due to the lack of research and proper design recommendations. In this paper, a total of seven pushout specimens were tested to investigate the load-slip behaviour of stainless steel shear connectors. A thorough discussion has been made on the differences between stainless steel bolted connectors and welded studs, in terms of the failure modes, load-slip behaviour and ultimate shear resistance. In parallel with the experimental programme, a finite element model was developed in ABAQUS to simulate the behaviour of stainless steel shear connectors, with which the effects of shear connector strength, concrete strength and embedded connector height to diameter ratio (h/d) were evaluated. The obtained experimental and numerical results were analysed and compared with existing codes of practice, including AS/NZS 2327, EN 1994-1-1 and ANSI/AISC 360-16. The comparison results indicated that the current codes need to be improved for the design of high strength stainless steel shear connectors. On this basis, modified design approaches were proposed to predict the shear capacity of stainless steel bolted connectors and welded studs in the composite beams.

Damage rate assessment of cantilever RC walls with backfill soil using coupled Lagrangian-Eulerian simulation

  • Javad Tahamtan;Majid Gholhaki;Iman Najjarbashi;Abdullah Hossaini;Hamid Pirmoghan
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.231-245
    • /
    • 2024
  • In recent decades, the protection and vulnerability of civil structures under explosion loads became a critical issue in terms of security, which may cause loss of lives and structural damage. Concrete retaining walls also restrict soils and slopes from displacements; meanwhile, intensive temporary loading may cause massive damage. In the current study, the modified Johnson-Holmquist (also known as J-H2) material model is implemented for concrete materials to model damages into the ABAQUS through user-subroutines to predict the blasting-induced concrete damages and volume strains. For this purpose, a 3D finite-element model of the concrete retaining wall was conducted in coupled Eulerian-Lagrangian simulation. Subsequently, a blast load equal to 500 kg of TNT was considered in three different positions due to UFC 3-340-02. Influences of the critical parameters in smooth blastings, such as distance from a free face, position, and effective blasting time, on concrete damage rate and destroy patterns, are explored. According to the simulation results, the concrete penetration pattern at the same distance is significantly influenced by the density of the progress environment. The result reveals that the progress of waves and the intensity of damages in free-air blasting is entirely different from those that progress in a dense surrounding atmosphere such as soil. Half-damaged elements in air blasts are more than those of embedded explosions, but dense environments such as soil impose much more pressure in a limited zone and cause more destruction in retaining walls.

형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출 (Automatic Text Extraction from News Video using Morphology and Text Shape)

  • 장인영;고병철;김길천;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.479-488
    • /
    • 2002
  • 최근 들어 인터넷 사용의 증가와 더불어 디지털 비디오의 수요 또한 급격히 증가하고 있는 추세이다. 따라서 디지털 비디오 데이타베이스의 인덱싱을 위한 자동화된 도구가 필요하게 되었다. 디지털비디오 영상에 인위적으로 삽입되어진 문자와 배경에 자연적으로 포함되어진 배경문자 등의 문자 정보는 이러한 비디오 인덱싱을 위한 중요한 단서가 되어질 수 있다. 본 논문에서는 뉴스 비디오의 정지 영상에서 뉴스 자막과 배경 문자를 추출하기 위한 새로운 방법을 제안한다. 제안된 알고리즘은 다음과 같이 세 단계로 구성된다. 첫 번째 전처리 단계에서는 입력된 컬러 영상을 명도 영상으로 변환하고, 히스토그램 스트레칭을 적용하여 영상의 수준을 향상시킨다. 이 영상에 적응적 임계값 추출에 의한 분할 방법을 수정 적용하여 영상을 분할한다. 두 번째 단계에서는 적응적 이진화가 적용된 결과 영상에 모폴로지 연산을 적절하게 사용하여, 우선 문자 영역은 아니면서 문자로 판단되기 쉬운 양의 오류(false-positive) 요소들이 강조되어 남아있는 영상을 만든다. 또한, 변형된 이진화 결과 영상에 모폴로지 연산과 본 논문에서 제안한 기하학적 보정(Geo-corrertion) 필터링 방법을 적용하여 문자와 문자로 판단되기 쉬운 요소들이 모두 강조되어 남아있는 영상을 만든다. 이 두 영상의 차를 구함으로서 찾고자 하는 문자 요소들이 주로 남고, 문자가 아닌 문자처럼 보이는 오류 요소들은 대부분 제거된 결과 영상을 만든다. 문자로 판단되는 양의 오류 영역들을 남기는데 사용된 모폴로지 연산은 3$\times$3 크기의 구조 요소를 갖는 열림과 (열림닫힘+닫힘열림)/2 이며, 문자 및 문자와 유사한 요소들을 남기는데 사용된 연산은 (열림닫힘+닫힘열림)/2와 기하학적 보정이다. 세 번째 검증 단계에서는 전체 영상 화소수 대비 각 후보 문자 영역의 화소수 비율, 각 후보 문자 영역의 전체 화소수 대비 외곽선의 화소수 비율, 각 외곽 사각형의 폭 대 높이간의 비율 등을 고려하여 비문자로 판단되는 요소들을 제거한다. 임의의 300개의 국내 뉴스 영상을 대상으로 실험한 결과 93.6%의 문자 추출률을 얻을 수 있었다. 또한, 본 논문에서 제안한 방법으로 국외 뉴스, 영화 비디오 등의 영상에서도 좋은 추출을 보임을 확인할 수 있었다.