Acknowledgement
Supported by : National Natural Science Foundation of China, Natural Science Foundation for Excellent Young Scholars of Jiangsu Province, China Association for Science and Technology
References
- Abbass, W., Siddiqi, Z.A., Aslam, F., Hussain, R.R. and Ahmed, S. (2013), "Bond behaviour of high-strength concrete flexural member under low cyclic fatigue loading", Fatig. Fract. Eng. Mater. Struct., 36(7), 602-613. https://doi.org/10.1111/ffe.12027.
- Ali-Ahmad, M., Subramaniam, K. and Ghosn, M. (2006), "Experimental investigation and fracture analysis of debonding between concrete and FRP sheets", J. Eng. Mech., 132(9), 914-923. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(914).
- Bazant, Z.P. and Planas, J. (1997), Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials, CRC Press LLC, Boca Raton.
- Carloni, C. and Subramaniam, K.V. (2010), "Direct determination of cohesive stress transfer during debonding of FRP from concrete", Compos. Struct., 93(1), 184-192. https://doi.org/10.1016/j.compstruct.2010.05.024.
- Carloni, C. and Subramaniam, K.V. (2013), "Investigation of sub-critical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis", Compos Part B-Eng., 51, 35-43. https://doi.org/10.1016/j.compositesb.2013.02.015.
- CEB-Comite Euro-international du Beton (1990), CEB-FIP model code 1990, Bulletin D' information. No.213/214[S].
- Chen, H.H.N., Su, R.K.L., Fok, S.L. and Zhang, H.G. (2017), "Fracture behavior of nuclear graphite under three-point bending tests", Eng. Fract. Mech., 186, 143-157. https://doi.org/10.1016/j.engfracmech.2017.09.030.
- Duan, K., Hu X. and Wittmann F.H. (2006), "Scaling of quasi-brittle fracture: boundary and size effect", Mech. Mater., 38(1-2), 128-141. https://doi.org/10.1016/j.mechmat.2005.05.016.
- Earij, A., Alfano, G., Cashell, K. and Zhou, X.M. (2017), "Nonlinear three-dimensional finite-element modelling of reinforced-concrete beams: Computational challenges and experimental validation", Eng. Fail. Anal., 82, 92-115. https://doi.org/10.1016/j.engfailanal.2017.08.025.
- Elices, M., Guine, G.V. and Planas, J. (1997), "On the measurement of concrete fracture energy using three-point bend tests", Mater. Struct., 30(200), 375-376. https://doi.org/10.1007/BF02480689.
- Firoozi, S., Dehestani, M. and Neya, B.N. (2018), "Effect of water to cement ratio on the mode III fracture energy of self-compacting concrete", Mater. Struct., 51(4), 80. https://doi.org/10.1617/s11527-018-1208-x.
- Gang, H. and Kwak, H.G. (2017), "A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading", Comput. Concrete, 20(1), 1-10. https://doi.org/10.12989/cac.2017.20.1.001.
- Haeri H. (2015), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z.
- Haeri, H. and Sarfarazi V. (2016), "Numerical simulation of tensile failure of concrete using particle flow code (PFC)", Comput. Concrete, 18(1), 39-51. https://doi.org/10.12989/cac.2016.18.1.039.
- Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", 13th International Conference on Fracture.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
- Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, 22(1), 39-51. https://doi.org/10.12989/cac.2018.22.1.039.
- Li, D.Y., Huang, P.Y., Guo, X.Y., Zheng, X.H., Lin, J.X. and Chen, Z.B. (2018), "Fatigue crack propagation behavior of RC beams strengthened with CFRP under cyclic bending loads", Fatig. Fract. Eng. Mater. Struct., 41(1), 212-222. https://doi.org/10.1111/ffe.12673.
- Navalurkar, R.K. and Hsu, C.T.T. (2001), "Fracture analysis of high strength concrete members", J. Mater. Civil Eng., 13(3), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(185).
- Ohno, K., Uji, K., Ueno, A. and Ohtsu, M. (2014), "Fracture process zone in notched concrete beam under three-point bending by acoustic emission", Constr. Build. Mater., 67, 139-145. https://doi.org/10.1016/j.conbuildmat.2014.05.012.
- Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Report TVBM-1006[R], Lund Institute of Technology, Division of Building Materials, Sweden.
- Rama, J.S.K., Chauhan, D.R., Sivakumar, M.V.N., Vasan, A. and Murthy, A.R. (2017), "Fracture properties of concrete using damaged plasticity model-A parametric study", Struct. Eng. Mech., 64(1), 59-69. https://doi.org/10.12989/sem.2017.64.1.059.
- Ranade, R., Li, V.C. and Heard, W.F. (2015), "Tensile rate effects in high strength-high ductility concrete", Cement Concrete Res., 68, 94-104. https://doi.org/10.1016/j.cemconres.2014.11.005.
- Reinhardt, H.W. and Cornelissen, H.A.W. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462).
- Reinhardt, H.W. and Ozbolt, J. (2007), "Fracture of concrete beams at different loading rates", Fract. Mech. Concrete Concrete Struct., 1-3, 563-569.
- Robins, P., Austin, S., Chandler, J. and Jones, P. (2001), "Flexural strain and crack width measurement of steel-fibre-reinforced concrete by optical grid and electrical gauge methods", Cement Concrete Res., 31(5), 719-729. https://doi.org/10.1016/S0008-8846(01)00465-3.
- Sarfarazi V. and Haeri H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266. http://dx.doi.org/10.12989/cac.2016.18.2.235.
- Sasmal, S., Thiyagarajan, R., Lieberum, K.H. and Koenders, E.A.B. (2018), "Numerical simulations of progression of damage in concrete embedded chemical anchors", Comput. Concrete, 22(4), 395-405. https://doi.org/10.12989/cac.2018.22.4.395.
- Shang, S.M. and Song, Y.P. (2013), "Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete", Constr. Build. Mater., 40, 322-329. https://doi.org/10.1016/j.conbuildmat.2012.11.012.
-
Skarzynski, L., Nitka, M. and Tejchman, M. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray
${\mu}$ CT images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010. - Subramaniam, K.V., Carloni, C. and Nobile, L. (2007), "Width effect in the interface fracture during shear debonding of FRP sheets from concrete", Eng. Fract. Mech., 74(4), 578-594. https://doi.org/10.1016/j.engfracmech.2006.09.002.
- Subramaniam, K.V., Nakale, S. and Gali, S. (2015), "Investigation of crack propagation in macro-synthetic fiber reinforced concrete", 5th International Conference on Construction Materials: Performance, Innovations and Structural Implications, Whistler, Canada.
- Travas, V., Ozbolt, J. and Kozar, I. (2009), "Failure of plain concrete beam at impact load: 3D finite element analysis", Int. J. Fract., 160(1), 31-41. https://doi.org/10.1007/s10704-009-9400-1.
- Trivedi, N., Singh, R.K. and Chattopadhyay, J. (2015), "Size independent fracture energy evaluation for plain cement concrete", Fatig. Fract. Eng. Mater. Struct., 38(7), 789-798. https://doi.org/10.1111/ffe.12283.
- Xiao, J., Liu, Q. and Wu, Y.C. (2012), "Numerical and experimental studies on fracture process of recycled concrete", Fatig. Fract. Eng. Mater. Struct., 35(8), 801-808. https://doi.org/10.1111/j.1460-2695.2012.01673.x.
- Xu, S.L. and Reinhardt, H.W. (1999), "Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beam", Int. J. Fract., 98(2), 151-177. https://doi.org/10.1023/A:1018740728458.
- Yan, D.M., Lin, G. and Chen, G.D. (2009), "Dynamic properties of plain concrete in triaxial stress state", ACI Mater. J., 106(1), 89-94.
- Zhang, X.X., Elazim, A., Ruiz, G. and Yu, R.C. (2014), "Fracture behavior of steel fibre-reinforced concrete at a wide range of loading rates", Int. J. Impact Eng., 71, 89-96. https://doi.org/10.1016/j.ijimpeng.2014.04.009.