• 제목/요약/키워드: modified electrodes

검색결과 245건 처리시간 0.031초

수식된 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막전극을 이용한 U(VI)의 정량 (Quantitative Determination of $UO2^{2+}$ with Modified $[Ru(v-bpy)_3]^{2+}$ Polymer Film Electrode)

  • 차성극
    • 대한화학회지
    • /
    • 제44권1호
    • /
    • pp.17-23
    • /
    • 2000
  • 전기화학적으로 중합한 $[Ru(v-bpy)_3]^{2+}$의 다가 양이은성 고분자 피막전극을 $PF6^-/ClO_4^-$대이온의 비가 1:1 정도 되게 한 후에 우라늄과의 착물의 안정도상수가 각각 38.6과 17.5인 xylenoI orange와 diethyldithiocarbamate로 변성한 전극을 제작하였다. 이를 이용하여 용액중의 U(VI)을 정량할 수 있는 여러 회 사용이 가능한 전극을 제작하였다. 이 때에 분석용 신호를 얻기 위한 전극은 Pt/p-$[Ru(v-bpy)_3]^{2+}$, ligand, U(VI)이며 염화은 기준전극을 사용하였다. 벗김전압전류 과정에서는 전자전달이 지배적인 과정이었으며, 검정선은 $1.0{\times}10^{-3}{\sim}1.0{\times}10^{-7}$ M 범위에서 0.99의 좋은 상관관계와 5${\sim}$8%의 상대 표준편차를 나타냈다.

  • PDF

Voltammetric Determination of Copper(II) at Chemically Modified Carbon Paste Electrodes Containing Alga

  • Bae, Zun-Ung;Kim, Young-Lark;Chang, Hye-Young
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.611-615
    • /
    • 1995
  • The design of appropriate chemically modified electrodes should allow development of new voltammetric measurement schemes with enhanced selectivity and sensitivity. Microorganism like algae has high ability to trap toxic and heavy metal ions and different affinities for metal ions. A copper(II) ion-selective carbon paste electrode was constructed by incorporating alga Anabaena into a conventional carbon paste mixture, and then the film of 10% Nafion was coated to avoid the swelling of the electrode surface. Copper ion could be deposited at the 25% algamodified electrode for 15 min without the applied potential while stirring the solution by only immersing the electrode in a buffer (pH 4.0) cot1taining copper(II). Temperature was controlled at $35^{\circ}C$. After preconcentration was carried out the electrode was transferred to a 0.1 M potassium chloride solution and was reduced at -0.6 volt at $25^{\circ}C$. The differential pulse anodic stripping voltammetry was employed. A well-defined oxidation peak could be obtained at -0.1 volt (vs SCE). In five deposition / measurement / regeneration cycles, the responses were reproducible and relative standard deviations were 3.3% for $8.0{\times}10^{-4}M$ copper(II). Calibration curve for copper was linear over the range from $2.0{\times}10^{-4}M$ to $1.0{\times}10^{-3}M$. The detection limit was $7.5{\times}10^{-5}M$. Studies of the effect of diverse ions showed that the coexisting metal ions had little or no effect for the determination of copper. But anions such as cyanide. oxalate and EDTA seriously interfered.

  • PDF

리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성 (Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2)

  • 고형신;최정은;이종대
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.592-597
    • /
    • 2014
  • 본 연구에서는 리튬이차전지의 음극활물질로 graphite의 전기화학적 특성을 향상시키기 위하여 졸-겔 법에 의한 graphite/$SiO_2$ 복합소재를 제조하였다. 제조된 graphite/$SiO_2$ 합성물은 XRD, FE-SEM과 EDX를 사용하여 분석하였다. $SiO_2$에 의해 표면 개질된 graphite는 SEI 층을 안정화시키는데 장점을 보여 주었다. Graphite/$SiO_2$ 전극을 작업 전극으로, 리튬메탈을 상대전극으로 하여 리튬이차전지의 전기화학 특성을 조사하였다. $LiPF_6$ 염과 EC/DMC 용매를 전해질로 사용하여 제조한 코인 셀의 전기화학적 거동은 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 평가하였다. Graphite/$SiO_2$ 전극을 사용한 리튬이차전지는 graphite 전극을 사용한 전지보다 우수한 특성을 보여주었으며, 0.1 C rate에서 465 mAh/g의 용량을 보여주었다. 또한 개질된 graphite 전극은 0.8 C rate에서 99%의 용량 보존율을 보여주었다.

전기 임피던스 단층촬영법에서 수정된 반복 Landweber 방법을 이용한 영상 복원 (Image Reconstruction using Modified Iterative Landweber Method in Electrical Impedance Tomography)

  • 김봉석;김지훈;김신;김경연
    • 전자공학회논문지SC
    • /
    • 제49권4호
    • /
    • pp.36-44
    • /
    • 2012
  • 전기 임피던스 단층촬영법은 대상물의 경계면에 부착된 여러 개의 전극들을 통해 전류를 주입하고 이에 유기되는 전압을 측정한 후, 이를 바탕으로 대상물 내부의 도전율(또는 저항률) 분포를 영상으로 복원하는 비교적 새로운 영상복원 기법이다. 본 논문에서는, 대상물 내부의 저항률 분포를 추정하기 위해서 전극사이의 전기저항과 저항률 분포와의 관계를 선형으로 가정하고, 이 선형 관계로부터 가중행렬을 계산한 후, 수정된 반복 Landweber 알고리즘을 적용하였다. 그리고 제안한 방법의 수렴시간을 줄이고 영상 복원의 정확도를 향상시키고자 목적 함수를 최소화하는 최적의 step length를 찾아 제안한 방법에 적용하였다. 몇 가지 시나리오를 설정하고 모의실험을 통해 제안된 방법의 영상 복원 성능을 평가한 결과, 비교적 양호한 복원 성능을 나타내었다.

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction

  • Im, Han Seo;Park, Seon Ha;Ha, Hyo Jeong;Lee, Sumin;Heo, Sungjun;Im, Sang Won;Nam, Ki Tae;Lim, Sung Yul
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.54-62
    • /
    • 2022
  • The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.

Enhanced Electrochemical Property of Surface Modified Li[Co1/3Ni1/3Mn1/3]O2 by ZrFx Coating

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.355-359
    • /
    • 2010
  • A $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ cathode was modified by applying a $ZrF_x$ coating. The surface-modified cathodes were characterized by XRD, SEM, EDS, TEM techniques. XRD patterns of $ZrF_x$-coated $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ revealed that the coating did not affect the crystal structure of the parent powder. SEM and TEM images showed that $ZrF_x$ nano-particles were formed as a coating layer, and EDS data confirmed that $ZrF_x$ distributed uniformly on the surface the powder. Capacity retention of coated samples at high C rates was superior to that of pristine sample. However, as the coating concentration increases beyond the optimum concentration, the rate capability was deteriorated. Whereas, as the increase of coating concentration to 2.0 wt %, the cyclic performances of the electrodes under the severe conditions (high cut-off voltage, 4.8 V, and high measurement temperature, $55^{\circ}C$) were improved considerably.

Study of physical simulation of electrochemical modification of clayey rock

  • Chai, Zhaoyun;Zhang, Yatiao;Scheuermann, Alexander
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.197-209
    • /
    • 2016
  • Clayey rock has large clay mineral content. When in contact with water, this expands considerably and may present a significant hazard to the stability of the rock in geotechnical engineering applications. This is particularly important in the present work, which focused on mitigating some unwelcomed properties of clayey rock. Changes in its physical properties were simulated by subjecting the rock to a low voltage direct current (DC) using copper, steel and aluminum electrodes. The modified mechanism of the coupled electrical and chemical fields acting on the clayey rock was analyzed. It was concluded that the essence of clayey rock electrochemical modification is the electrokinetic effect of the DC field, together with the coupled hydraulic and electrical potential gradients in fine-grained clayey rock, including ion migration, electrophoresis and electro-osmosis. The aluminum cathodes were corroded and generated gibbsite at the anode; the steel and copper cathodes showed no obvious change. The electrical resistivity and uniaxial compressive strength (UCS) of the modified specimens from the anode, intermediate and cathode zones tended to decrease. Samples taken from these zones showed a positive correlation between electric resistivity and UCS.

Heterogeneous Electron Transfer at Polyoxometalate-modified Electrode Surfaces

  • Choi, Su-Hee;Seo, Bo-Ra;Kim, Jong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.104-111
    • /
    • 2010
  • The heterogeneous electron transfer at $SiMo_{12}O_{40}^{4-}$ monolayers on GC, HOPG, and Au electrode surfaces are investigated using cyclic voltammetric and electrochemical impedance spectroscopic (EIS) methods. The electron transfer of negatively charged $Fe(CN)_6^{3-}$ species is retarded at $SiMo_{12}O_{40}^{4-}$-modified electrode surfaces, while that of positively charged $Ru(NH_3)_6^{3+}$species is accelerated at the modified surfaces. This is due to the electrostatic interactions between $SiMo_{12}O_{40}^{4-}$ layers on surfaces and charged redox species. The electron transfer kinetics of a neutral redox species, 1,1‘-ferrocenedimethanol (FDM), is not affected by the modification of electrode surfaces with $SiMo_{12}O_{40}^{4-}$, indicating the $SiMo_{12}O_{40}^{4-}$ monolayers do not impart barriers to electron transfer of neutral redox species. This is different from the case of thiolate SAMs which always add barriers to electron transfer. The effect of $SiMo_{12}O_{40}^{4-}$ layers on the electron transfer of charged redox species is dependent on the kind of electrodes, where HOPG surfaces exhibit marked effects. Possible mechanisms responsible for different electron transfer behaviors at $SiMo_{12}O_{40}^{4-}$ layers are proposed.

Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

  • Liu, Wei;Wu, Liang;Zhang, Xiaohua;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.204-210
    • /
    • 2014
  • The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 ${\mu}M$, 0.7-440 ${\mu}M$ and 3.0-365 ${\mu}M$, respectively, and the detection limits (S/N = 3) are $0.03{\mu}M$, $0.11{\mu}M$ and $0.38{\mu}M$, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

Ni-MH 전극용 $AB_2$계 수소저장합금의 볼밀링 처리에 의한 표면개질 연구 (Surface Modification of $AB_2$ Type Hydrogen Storage Alloys by Ball Milling for Ni-MH Battery)

  • 문홍기;박충년;유정현;박찬진;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.418-424
    • /
    • 2006
  • In order to improve the activation properties of the $AB_2$ type hydrogen storage alloys for Ni-MH battery, the alloy surface was modified by employing high energy ball milling. The $Zr_{0.54}Ti_{0.45}V_{0.54}Ni_{0.87}Cr_{0.15}Co_{0.21}Mn_{0.24}$ alloy powder was ball milled for various period by using the high energy ball mill. As the ball milling time increased, activation of the $AB_2$ type composite powder electrodes were enhanced regardless of additives. When the ball milling time was small discharge capacities of the $AB_2$ type composite powder electrodes increased with the milling time. On the other hand for large milling time it decreased with increasing milling time. The maximum discharge capacity was obtained by ball milling for 3-4 min.