• Title/Summary/Keyword: modified base materials

Search Result 85, Processing Time 0.029 seconds

Enhancement of Interfacial Adhesion of Epoxy/Red Mud Nanocomposites Produced by Acidic Surface Treatment on Red Mud (Red Mud의 산처리에 의한 에폭시/Red Mud 나노복합재료의 계면 결합력 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.587-593
    • /
    • 2001
  • In this work, red mud (RM) was chemically modified by 0.1, 1, and 5 M H3PO4 solution to prepare epoxy/RM nanocomposites. The effect of chemical treatment on pH, acid-base values, specific surface area, and porosity of RM surface was analyzed. To estimate the mechanical interfacial properties of epoxy/RM nanocomposites, the critical stress intensity factor (K$_{IC}$) was measured. From the experimental results, it was clearly revealed that the porosity, specific surface area, and acid values of RM surface were developed as the increase of the treatment concentration due to the increase of acidic functional group, including hydroxyl group on RM surface. The mechanical interfacial properties of epoxy/treated-RM nanocomposites were higher than those of epoxy/RM as-received due to an improvement of interfacial bonding between basic matrix and RM surface.

  • PDF

An Impurity Quantitative Study for Pavement Application in Recycled Waste Aggregates (재생골재의 도로적용을 위한 이물질 정량화 연구)

  • Park, Jun-Young;Cho, Yoon-Ho;Lim, Nam-Woong
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.21-29
    • /
    • 2005
  • One way to recycle the construction wastes is to use the waste concrete aggregates as the pavement materials. Although there are many studies and technical developments about waste concrete aggregates, the impurities produced in the process of the aggregate production prevent the use of the waste concrete aggregates in the pavement construction. In this study, the impurities included in the recycled waste aggregates were classified into inorganic and organic ones according to their characteristics, and the influences of each impurities on the pavement performance were presented. It was also showed that the limit of impurity content in the lean concrete base through the correlation between the inorganic impurity content and the compressive strength, and that in the granuler subbase layer through the correlation between the organic impurity content and the modified CBR. In conclusion, it is possible to apply waste concrete aggregates for the pavement when inorganic impurity content is less than 10% in the lean concrete base, and organic impurity content is less than 2% in granular subbase.

  • PDF

Low Temperature Co-firing of Camber-free Ceramic-metal Based LED Array Package (세라믹-금속 기반 LED 어레이 패키지의 저온동시소성시 휨발생 억제 연구)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Ceramic-metal based high power LED array package was developed via thick film LTCC technology using a glass-ceramic insulation layer and a silver conductor patterns directly printed on the aluminum heat sink substrate. The thermal resistance measurement using thermal transient tester revealed that ceramic-metal base LED package exhibited a superior heat dissipation property to compare with the previously known packaging method such as FR-4 based MCPCB. A prototype LED package sub-module with 50 watts power rating was fabricated using a ceramic-metal base chip-on-a board technology with minimized camber deformation during heat treatment by using partially covered glass-ceramic insulation layer design onto the aluminum heat spread substrate. This modified circuit design resulted in a camber-free packaging substrate and an enhanced heat transfer property compared with conventional MCPCB package. In addition, the partially covered design provided a material cost reduction compared with the fully covered one.

MICROLEAKAGE OF COMPOMER IN CLASS II CAVITY (제 2 급 와동에 충전된 Compome의 미세누출에 관한 연구)

  • Im, Jae-Hun;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.346-355
    • /
    • 1999
  • To evaluate the micro leakage of compomer, 4 materials were divided into 4 groups of 15 cavities each.(Group 1: Z-100, Group 2: Dyarct AP, Group 3: Fuji II LC, Group 4: Compoglass) After the class II cavities were prepared using carbide bur No. 553, all specimen were restored by incremental filling technique. In group 3, Z-100 was filled with a base of a light curing glass-ionomer. After 7 days, all specimens were thermocycled between $5^{\circ}C$ and $55^{\circ}C$ for 500 cycles, followed by placement in 50% silver nitrate dye for 2 hours at $37^{\circ}C$. After rinsed in distilled water, these teeth were immersed in photodeveloping solution and exposed to fluorescent light for 6 hours. Teeth were then washed in distilled water to remove the photodeveloping solution, sectioned mesio-distally and evaluated. The results were as follows : 1. In the cervical portion, there was significant difference between Fuji II LC and other groups(Z-100, Dyract AP, Compoglass), Fuji II LC had the least value.(p<0.05) 2. In the cervical portion, there was not significant difference among Dyract AP, Z-100 and Compoglass. 3. In the occlusal portion, there was not significant difference among Dyract AP, Z-100 and Compoglass. From the results above, In enamel, microleakage of compomer such as Dyract AP and Compoglass resemble to that of composite resin. It is thought that it is due to characteristics of composite resin portion of compomer. But in dentin, microleakage of compomer is higher than that of resin modified glass ionomer cement, it is thought that in compomer, acid-base reaction is not developed with dentin.

  • PDF

Influence of marginal bone resorption on two mini implant-retained mandibular overdenture: An in vitro study

  • Guo, Ying;Kono, Kentaro;Suzuki, Yasunori;Ohkubo, Chikahiro;Zeng, Jian-Yu;Zhang, Jing
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE. To investigate the biomechanical effect of marginal bone resorption (MBR) on the mandibular mini implant (MI)-retained overdenture (MI-OD) on the edentulous model. MATERIALS AND METHODS. The experimental mandibular edentulous model was modified from a commercial model with 2 mm thick artificial soft tissue under denture base. Two MIs (Φ2.6 mm × 10 mm) were bilaterally placed between the lateral incisor and the canine area and attached with magnetic attachments. Three groups were set up as follows: 1) alveolar bone around the MI without MBR (normal group), 2) with MBR to 1/2 the length of the implant (resorption group), and 3) complete denture (CD) without MI (CD group). Strain around the MI, pressure near the first molar area, and displacement of denture were simultaneously measured, loading up to 50 N under bilateral/unilateral loading. Statistical analysis was performed using independent-samples t test and one-way ANOVA (α=.05). RESULTS. The strain around the MI with MBR was approximately 1.5 times higher than that without MBR. The pressure in CD was higher than in MI-ODs (P<.05), while there was no statistical difference between the normal and resorption group (P>.05). Similarly, the CD demonstrated a greater displacement of the denture base than did the MI-ODs during bilateral and unilateral loadings (P<.05). CONCLUSION. The strain around the MI with MBR was approximately 1.5 times higher than that without MBR. The pressure on posterior alveolar ridge and denture displacement of MI-ODs significantly decreased compared to CDs, even when MBR occurs. Bilateral balanced occlusion was recommended for MI-ODs, especially when MBR occurred.

A CLASSIFICATION AND PROTOTYPING OF SKELETAL CLASS III ON ETIO-PATHOGENIC BASIS (병인론에 근거한 성인 골격성 III급 부정교합자의 분류와 그 prototype 제시를 위한 연구)

  • Hong, Soon-Xae;Yi, Choong-Kook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.4
    • /
    • pp.397-410
    • /
    • 2000
  • Skeletal class III had been classified by the position of the maxilla, the mandible, the maxillary alveolus, the mandibular alveolus and vertical development. This morphologic approach is simple and useful for clinical use, but it is insufficient to permit understanding of the pathophysiology of dysmorphoses. The author hypothesizes that there are different patterns of mutual relation of the skeletal components which have contributed pathologic equilibrium of skeletal class III. The purpose of this study are threefold: 1) to classify skeletal class III in subgroups, which can show the architectural characteristics of the deformity, 2) to analyse the craniofacial architecture of each subgroup on etio-pathogenic basis, and 3) to characterize and visualize the pattern as a prototype. Materials used in this study were lateral cephalograms of 106 skeletal class III adults, which were analysed with modified Delaire's architectural and structural analysis. Linear and angular measurements of the individual subject were obtained and cluster analysis was used for the subgrouping. Data were evaluated for verification of the statistical significances. The following results were obtained. 1. By the modified Delaire's architectural and structural analysis and cluster analysis, skeletal class III adults were classified into 7 clusters and presented as prototypes, which could show the pathophysiology of the skeletal architecture 2. There was significant relationship in measurement variables of each cluster, which could reflect characteristics of the skeletal pattern of growth. 3. The flexure of cranial base had a close relationship to the anterior rotational growth of the maxilla and contributes to understand the etio-pathology of skeletal class III. 4. The proportion of craniospinal area in cranial depth, craniocervical angle and vertical position of point Om had a close relationship to rotational growth of the mandible and direction of condylar growth. They contribute to understand the etio-pathology of skeletal class III. In summary, the cranium and the craniocervical area must be considered in diagnosis and treatment planning of dentofacial deformity. And the occlusal plane can be considered as a representative which shows the mutual relationships of the skeletal components.

  • PDF

Modified Graded Repair of Cerebrospinal Fluid Leaks in Endoscopic Endonasal Transsphenoidal Surgery

  • Park, Jae-Hyun;Choi, Jai Ho;Kim, Young-Il;Kim, Sung Won;Hong, Yong-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.36-42
    • /
    • 2015
  • Objective : Complete sellar floor reconstruction is critical to avoid postoperative cerebrospinal fluid (CSF) leakage during transsphenoidal surgery. Recently, the pedicled nasoseptal flap has undergone many modifications and eventually proved to be valuable and efficient. However, using these nasoseptal flaps in all patients who undergo transsphenoidal surgery, including those who had none or only minor CSF leakage, appears to be overly invasive and time-consuming. Methods : Patients undergoing endoscopic endonasal transsphenoidal tumor surgery within a 5 year-period were reviewed. Since 2009, we classified the intraoperative CSF leakage into grades from 0 to 3. Sellar floor reconstruction was tailored to each leak grade. We did not use any tissue grafts such as abdominal fat and did not include any procedures of CSF diversions such as lumbar drainage. Results : Among 200 cases in 188 patients (147 pituitary adenoma and 41 other pathologies), intraoperative CSF leakage was observed in 27.4% of 197 cases : 14.7% Grade 1, 4.6% Grade 2a, 3.0% Grade 2b, and 5.1% Grade 3. Postoperative CSF leakage was observed in none of the cases. Septal bone buttress was used for Grade 1 to 3 leakages instead of any other foreign materials. Pedicled nasoseptal flap was used for Grades 2b and 3 leakages. Unused septal bones and nasoseptal flaps were repositioned. Conclusion : Modified classification of intraoperative CSF leaks and tailored repair technique in a multilayered fashion using an en-bloc harvested septal bone and vascularized nasoseptal flaps is an effective and reliable method for the prevention of postoperative CSF leaks.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

Removal of arsenic from aqueous phase using magnetized activated carbon and magnetic separation

  • Kwon, H.W.;Shin, T.C.;Kim, J.J.;Ha, D.W.;Kim, Min Gyu;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2018
  • Arsenic (As) is one of the elements having most harmful impact on the human health. Arsenic is a known carcinogen and arsenic contamination of drinking water is affecting on humans in many regions of the world. Adsorption has been proved most preferable technique for the removal of arsenic. Many researchers have studied various types of solid materials as arsenic adsorbent, and iron oxide and its modified forms are considered as the most effective adsorbent in terms of adsorption capacity, recovery, and economics. However, most of all iron oxides have small surface area in comparing with common adsorbents in environmental application such as activated carbon but the activated carbon has weak sorption affinity for arsenic. We have used an activated carbon as base adsorbent and iron oxide coating on the activated carbon as high affinity sorption sites and giving magnetic attraction ability. In this study, adsorption properties of arsenic and magnetic separation efficiency of the magnetized activated carbon (MAC) were evaluated with variable iron oxide content. As the iron oxide content of the MAC increased, adsorption capacity has also gradually increased up to a point where clogging by iron oxide in the pore of activated carbon compensate the increased sorption capacity. The increase of iron oxide content of the MAC also affected magnetic properties, which resulted in greater magnetic separation efficiency. Current results show that magnetically modified common adsorbent can be an efficiency improved adsorbent and a feasible environmental process if it is combined with the magnetic separation.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.