• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.027 seconds

A Small MR Brake for Force Feedback Devices (힘 반영 장치용 소행 MR 브레이크)

  • 김승종;조창현;이종민;황요하;김문상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.169-172
    • /
    • 2004
  • This paper proposes a new MR(magneto-rheological) brake utilizing composite modes of MR fluid. Its basic structure and design scheme are almost the same with the conventional MR brake, but for slots in a rotating disk or shell. The slots enable the proposed MR brake to use a new mode, so-called, ‘direct cutting chain mode’as well as shear mode, which results in increasing the braking force(almost 150% compared to the case without slots). Some experimental results show that the proposed MR brake provide the sufficient braking force to be adopted for small portable force feedback devices.

  • PDF

Anechoic Chamber Design using Broadband Compact Absorber (패널형 흡음재를 이용한 무향실의 설계)

  • ;;Peter Brandstatt;Helmut V. Fuchs
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • Conventional method for designing and installing anechoic chambers is to utilize porous wedges for the sound absorbers. As cutoff frequency lowers down such as 63Hz or 50Hz, the corresponding long wedges diminish the free field area of the chamber. In this study, a new broadband compact absorber(BCA) is introduced which absorbs acoustic energy down to 50Hz. Most prominent is that it measures only 250mm thick. A freely vibrating panel between the non-fibrous absorbers allows tuned absorption at the low frequency region in addition to the high frequency absorption resulted from the conventional absorber installed at the front. Standing waves at low frequency range are suppressed as the BCA modules which are tuned to the corresponding modes absorb sound energy effectively, resulting in anechoic condition. Not only the low frequency performances, but the high frequency absorption is measured to meet adequate conditions for the anechoic chamber. Realized BCA chambers are presented.

  • PDF

Non-linear Vibration of Rectangular Plates (직사각형 평판의 비선형 진동)

  • Chang, Seo-Il;Lee, Jang-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.35-39
    • /
    • 1994
  • One of the important characteristics of the response of nonlinear systems is the existence of subharmonic resonances. When some conditions in parameter space are satisfied. It is possible even in the presence of damping for a periodically excited nonlinear system to possess a response which is the combination of a contribution at the excitation frequency and a component at the system natural frequency. The system natural frequency being a submultiple of the excitation frequency implies that the resulting response is a subharmonic oscillation. In general, there also co-exists, for the system, a response at the excitation frequency, and initial conditions determine which of the steady-state responses is achieved in an experiment or a numerical simulation. In single-degree-of-freedom systems with harmonic excitation, depending on the type of the nonlinearity, e.g., cubic or quadratic the frequency of subharmonic response is respectively, one-third or one-half of that of the excitation frequency. Although subharmonic resonance is one of the principal characteristics of a nonlinear system the subharmonic responses of structures in the presence of internal resonances have been studied very rarely. In this work, we consider subharmonic responses in the two-mode approximation of the plate equations. It is assumed that the two modes are in one-to-one internal resonance. Constant and periodic steady-state solutions of the averaged equations are studied. Finally, the results of direct time integration of the original equations of motion are presented and compared with those obtained from the averaged equations.

  • PDF

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.

The Vibration of an Elastic Rectangular Plate in a Fluid (직사각형판(直四角形板)의 접수진동(接水振動))

  • Keuck-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 1976
  • It is a well-known phenomenon that, in the case of vibrations of an elastic body in a fluid such as water, the presence of the surrounding fluid has the effect of lowering the natural frequencies of the vibration as compared with those in air or vacuum on account of the increased inertia, i.e. added mass. In this report, defining the mass increase factor as the ratio of added mass to vibration mass of the body in air, the author investigated the mass increased factor of an elastic plate vibrating in the fluid. It is assumed that the edges of the plate are simply supported, and that the surrounding fluid is an infinite ideal one. For the problem formulation the elliptical cylindrical coordinate system is adopted, so that a rectangular plate may be represented by a sheet degenerated from an elliptical cylinder. By virtue of the coordinate system adopted, plates which are chordwisely finite and lengthwisely contineous could directly be treated, but plates which are chordwisely finite in both directions could not be treated directly. For the latter, hence, plates which are chordwisely finite and lengthwisely semi-finite are investigated as an appropriate approximation. Some examples of the mass increase factor are numerically calculated for the fundamental mode and modes of zero or one nodal line in each direction with the range of the aspect ratio from 1 to 10 or more.

  • PDF

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

Free vibrations of anisotropic rectangular plates with holes and attached masses

  • Rossit, C.A.;Ciancio, P.M.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2008
  • Anisotropic materials are increasingly required in modern technological applications. Certainly, civil, mechanical and naval engineers frequently deal with the situation of analyzing the dynamical behaviour of structural elements being composed of such materials. For example, panels of anisotropic materials must sometimes support electromechanical engines, and besides, holes are performed in them for operational reasons e.g., conduits, ducts or electrical connections. This study is concerned with the natural frequencies and normal modes of vibration of rectangular anisotropic plates supported by different combinations of the classical boundary conditions: clamped, simply - supported and free, and with additional complexities such holes of free boundaries and attached concentrated masses. A variational approach (the well known Ritz method) is used, where the displacement amplitude is approximated by a set of beam functions in each coordinate direction corresponding to the sides of the rectangular plate. Consequently each coordinate function satisfies the essential boundary conditions at the outer edge of the plate. The influence of the position and magnitude of both hole and mass, on the natural frequencies and modal shapes of vibration are studied for a generic anisotropic material. The classical Ritz method with beam functions as spatial approximation proved to be a suitable procedure to solve a problem of such analytical complexity.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.