• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.029 seconds

Operational modal analysis of structures by stochastic subspace identification with a delay index

  • Li, Dan;Ren, Wei-Xin;Hu, Yi-Ding;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.187-207
    • /
    • 2016
  • Practical ambient excitations of engineering structures usually do not comply with the stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace identification algorithms and determination of the delay index are discussed. Numerical simulations on a four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise ambient excitations.

Booming Noise Reduction of Passenger Cars by Mode Decoupling of Structural-Acoustic Systems (구조-음향 모드 비연성에 의한 차량의 부밍 소음 저감)

  • 고강호;이장무
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.822-827
    • /
    • 1999
  • The reduction of booming noise level and improvement of sound quality in the vehicle interior have been major fields of vehicle NVH for many years. In order to reduce the booming noise this paper proposed a system variable, which takes account of mode shapes and natural frequencies of the structural-acoustic system, measurement points and excitation frequency. By simplifying the system variable, the major contributors of panels inculding roof, roof lining, wind shield glasses, doors and floor to booming noise at a specific frequency was experimentally found. Also the relationships between structural modes of roof lining, one of the major contributors, and acoustic modes of compartment cavity were investigated from the viewpoint fo structure-borne noise. In addition, the roof lining was modified structurally by applying marble sponge to the gap between roof and roof lining. Asthe result of structural modification, the booming noise was reduce at target frequency.

  • PDF

Automated identification of the modal parameters of a cable-stayed bridge: Influence of the wind conditions

  • Magalhaes, Filipe;Cunha, Alvaro
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.431-444
    • /
    • 2016
  • This paper was written in the context of a benchmark study promoted by The Hong Kong Polytechnic University using data samples collected in an instrumented cable-stayed bridge. The main goal of the benchmark test was to study the identification of the bridge modes of vibration under different wind conditions. In this contribution, the tools developed at ViBest/FEUP for automated data processing of setups collected by dynamic monitoring systems are presented and applied to the data made available in the context of the benchmark study. The applied tools are based on parametric output only modal identification methods combined with clustering algorithms. The obtained results demonstrate that the proposed algorithms succeeded to automatically identify the modes with relevant contribution for the bridge response under different wind conditions.

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Analysis on the Hunting Motion of the KTX (KTX 헌팅운동 해석)

  • Lee Seung-Il;Kim Jae-Chul;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.755-761
    • /
    • 2003
  • The dynamic analysis of the KTX can predict the dynamic motions which occurred in test drive. In this study an analytical model of the KTX is developed to find the critical speed. The numerical analysis for the nonlinear equation motions of 17 degrees of freedom show the running stability and the critical speed due to the hunting motion of the KTX. Also, the vibration modes of the KTX are calculated using the ADAMS/RAIL software, which show that the critical speed occurs for the yawing modes of the car body and the bogie. Finally, this paper shows that the critical speed of the KTX could be changed with the modifications of the design parameters of wheel conicity and wheel contact point.

  • PDF

Characteristics of Low-Frequency Combustion-driven Oscillation in a Surface Burner (표면연소기의 저주파 연소진동음의 특성)

  • 한희갑;이근희;권영필
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.991-997
    • /
    • 2000
  • The objective of this study is to examine the onset condition and the frequency characteristics of the low-frequency combustion oscillation in a surface burner. For this purpose, extensive parametric studies have been performed experimentally and the effects of size of each section, the equivalence ratio, and the entrance velocity on oscillatory behavior explored. The experimental results were discussed in comparison with the other combustors associated tilth the low-frequency combustion oscillation. The combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. The oscillation frequency is dependent not on the burner geometry but on the equivalence ratio and the combustion load. Low-frequency combustion mode was formed to be divided into two different modes, named C1 and C2 respectively. Two modes occurred individually, simultaneously or transitionally according to the equivalence ratio and combustion load. The characteristics of low-frequency oscillation is different from each other depending on the type of combustors. The surface burner has also its own characteristics of low -frequency oscillation.

  • PDF

A Modified Simple Acoustic Analysis of Rectangular Simple Expansion Chamber with Consideration of Higher Order Modes (고차모드를 고려한 사각형 단순 확장관의 간편음향해석법의 개선)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.340-347
    • /
    • 1999
  • The acoustic performance of reactive type single expansion chamber can be calculated theoretically by plane wave theory. But higher order model should be considered to widen the frequency range. Mode matching method has been developed to consider higher order modes, but very complicated algebra should be used. Munjal suggested a numerical collocation method, which can overcome the shortcomings of mode matching method, using the compatibility conditions for acoustic pressure and particle velocity at the junctions of area discontinuities. But the restriction of Munjal's method is that the ratio between the area of inlet(or outlet) pipe and that of chamber must be natural number. In this paper, the new method was suggested to overcome the shortcomings of Munjal's method. The predictions by this method was also compared with those by the finite element method and Munjal's method in order to demonstrate the accuracy of the modified method presented here.

  • PDF

Elliptical Trajectory Analysis of Ultrasonic Linear Motor using ANSYS (ANSYS를 이용한 초음파 리니어 모터의 타원궤적 해석)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.292-295
    • /
    • 2002
  • Transducer for linear ultrasonic motor with symmetric and anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. In this paper, elliptical trajectory of transducer was analyzed by employing the finite element method.

  • PDF

Multi-sensor data-based anomaly detection and diagnosis of a pumped storage hydropower plant

  • Sojin Shin;Cheolgyu Hyun;Seongpil Cho;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.569-581
    • /
    • 2023
  • This paper introduces a system to detect and diagnose anomalies in pumped storage hydropower plants. We collect data from various types of sensors, including those monitoring temperature, vibration, and power. The data are classified according to the operation modes (pump and turbine operation modes) and normalized to remove the influence of the external environment. To detect anomalies and diagnose their types, we adopt a multivariate normal distribution analysis by learning the distribution of the normal data. The feasibility of the proposed system is evaluated using actual monitoring data of a pumped storage hydropower plant. The proposed system can be used to implement condition monitoring systems for other plants through modifications.

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.