• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.024 seconds

Dynamic Modeling of the Stator Core of the Electrical Machine Using Orthotroic Characteristics (이방성을 고려한 회전기기 고정자 코어의 동적 모델링)

  • Kim, Heui-Won;Lee, Soo-Mok;Kim, Kwan-Young;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1044-1048
    • /
    • 2002
  • The experimental modal testing has been carried out for the stator of a generator to confirm the vibrational mode shapes and the corresponding natural frequencies. The model of the stator for the vibration analysis was developed and a series of vibration analyses was carried out. And the properties of the solid element were updated to reduce the differences of the natural frequencies between the measured and the analysed. In the vibration anlyses, the axial, radial and circumferential properties of the solid element were separately varied to take into account the orthotropic effect of the laminated structure and to match the primary modes of the stator core which were extracted from the modal testing. After several attempts to match the measured natural frequencies and model shapes, the properties of the stator model were determined. Comparison of the vibration analyses results based on the determined properties showed fairly good coincidence with the measured data.

  • PDF

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

Vibration Measurement of Cable by Image Processing Technique (영상처리를 통한 케이블의 진동 계측)

  • Kwak, Moon K.;Shin, Ji-Hwan;Koo, Jae R.;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.303-305
    • /
    • 2014
  • This paper is concerned with the vibration measurement of cable by image processing technique. The measurement system consists of a CCD camera and zoom lens. The image data can be transferred to PC via USB or IEEE1394 port. In this study, a Matlab program was made to process the acquired image data. After acquiring an image data for each frame, this data is binarized for tracing cable vibrations. Then the area occupied by the cable is marked by 1 and the background is covered by 0. In this way, we can calculate the displacement of the cable. Experimental results show that the tracing of cable displacements is possible and natural frequencies and mode shapes can be computed. The accuracy of the image processing system for vibration measurement depends on the maximum frame rate of the CCD camera. The use of a high-speed camera enables us to compute more higher modes. The laboratory experiments guarantee the vibration measurement of real transmission lines.

  • PDF

Torsional modal testing of a non-ferromagnetic shaft by magnetostrictive patch transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1159-1164
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy job to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

  • PDF

Torsional Modal Testing of a Non-ferromagnetic Shaft by Magnetostrictive Patch Transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.879-885
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy task to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

Active Vibration Control of Plates Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 평판 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.940-950
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems at high frequencies due to non-collocated sensor/actuator configuration with the DVFB can be alleviated by the proposed FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The dynamics of a clamped plate under forces and moments and the FVF controllers are formulated. The stability of the control system and performance are investigated with the open loop transfer function(OLTF). It is found that the FVF controller has a higher gain margin than the corresponding DVFB controller owing to the rapid roll-off behavior at high frequencies. Although the gain margin cannot be fully utilized because of the enhancement at the high frequencies, the vibration at the modes lower than the tuning frequency is well controlled. This performance of the FVF controller is shown to be improved from that of the DVFB controller. It is, however, noted that the stability around the tuning frequency is very sensitive so that the enhancement in vibration level should be followed. The reduction performance at low frequencies using the FVF controller should be compromised with the enhancement in the vibration at high frequencies while designing the controller.

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

Optimal Vibration Control of a Plate Using Optical Fiber Sensor and Piezoelectric Actuator (광섬유 센서와 압전 작동기를 이용한 평판의 최적 진동 제어)

  • Kim, Do-Hyung;Han, Jae-Hung;Yang, Seung-Man;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.294-301
    • /
    • 2002
  • Vibration control of a plate using an optical fiber sensor and a piezoelectric actuator is considered in the present study, An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and piezoelectric actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion Is validated by forced nitration experiment. A linear time invariant system model is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. Control performance is presented in frequency and time domains. It is found that the nitration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

The effect of Local Vibration Modes on the Flutter (국부진동모드가 플러터해석에 미치는 영향연구)

  • Shin, Young-Sug;Kim, Heon-Ju;Kim, Seong-Tae;Kim, Jae-Young;Hwang, Chul-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.919-926
    • /
    • 2011
  • The fin of high speed air vehicle is composed of skins and strong skeletons. In the flutter analysis, the eigenmodes of a fin are used for evaluating the unsteady aerodynamic force and the modal approach is applied for solving the flutter equation in both time and frequency domain. Therefore, the proper eigenmodes used for a modal flutter analysis should be chosen. For the appropriate choice of eigenmodes, when there exist local modes of a skin in the high modes, the effects of those modes on the unsteady aerodynamic force and flutter characteristics are anlalyzed.