• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.03 seconds

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

On the Effective Shear Rigidity in Ship Vibration Analysis (선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度))

  • K.C.,Kim;S.H.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

Frequencies and Mode Shapes of Annular Plates tilth Variable Thickness by the Ritz Method in Three-Dimensional Analysis (변두께를 갖는 두꺼운 환형판의 삼차원적 리츠방법에 의한 진동수와 모드형상)

  • 양근혁;강재훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.89-100
    • /
    • 2001
  • The Ritz method Is applied In a three-dimensional (3-D) analysis to obtain accurate frequencies for thick. linearly tapered. annular plates. The method is formulated for annular plates haying any combination of free or fixed boundaries at both Inner and outer edges. Admissible functions for the three displacement components are chosen as trigonometric functions in the circumferential co-ordinate. and a1gebraic polynomials in the radial and thickness co-ordinates. Upper bound convergence of the non-dimensional frequencies to the exact values within at least four significant figures is demonstrated. Comparisons of results for annular plates with linearly varying thickness are made with ones obtained by others using 2-D classical thin place theory. Extensive and accurate ( four significant figures ) frequencies are presented 7or completely free. thick, linearly tapered annular plates haying ratios of average place thickness to difference between outer radius (a) and inner radius (b) radios (h$_{m}$/L) of 0.1 and 0.2 for b/L=0.2 and 0.5. All 3-D modes are included in the analyses : e.g., flexural, thickness-shear. In-plane stretching, and torsional. Because frequency data liven is exact 7o a\ulcorner least four digits. It is benchmark data against which the results from other methods (e.g.. 2-D 7hick plate theory, finite element methods. finite difference methods) and may be compared. Throughout this work, Poisson\`s ratio $\upsilon$ is fixed at 0.3 for numerical calculations.s.

  • PDF

A Study on the Structural Reinforcement for the Reduction of Transverse Vibration by Ship's Main Engine (선박 주기관에 의한 횡진동 저감을 위한 구조보강 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun;Im, Hong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.279-285
    • /
    • 2019
  • Transverse vibrations of a ship's aft end and deckhouse are mainly induced by transverse exciting forces from the main engine. Resonance should be avoided in the initial design stages when there is a prediction of resonance between the main engine and transverse modes of the deckhouse. Estimates of frequencies for resonance avoidance are possible from the specifications of the main engine and propeller, but the inherent vibration frequency of the structure around the engine room is not easy to estimate due to the variation in the shape. Experience-oriented vibration design is also carried out, which results in many problems, such as process delay, over-injection of on-site personnel, and iterative performance of the design. For the flexible design of 8,600 TEU container vessels, this study addressed the resonance problem caused by the transverse vibration of the main engine when only the main engine was changed from 12 cylinders to 10 cylinders without modification of the hull structure layout. Efficient structural reinforcement design guidelines are presented for avoiding resonances with the main engine lateral vibration and the structure around the engine room. The guidelines are expected to be used as practical design guidelines at design sites.

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.

Dynamic analysis of a cable-stayed bridge using continuous formulation of 1-D linear member

  • Yu, Chih-Peng;Cheng, Chia-Chi
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.271-295
    • /
    • 2012
  • This paper presents the solution scheme of using the continuous formulation of 1-D linear member for the dynamic analysis of structures consisting of axially loaded members. The context describes specific applications of such scheme to the verification of experimental data obtained from field test of bridges carried out by a microwave interferometer system and velocimeters. Attention is focused on analysis outlines that may be applicable to in-situ assessment for cable-stayed bridges. The derivation of the dynamic stiffness matrix of a prismatic member with distributed properties is briefly reviewed. A back calculation formula using frequencies of two arbitrary modes of vibration is next proposed to compute the tension force in cables. Derivation of the proposed formula is based on the formulation of an axially loaded flexural member. The applications of the formulation and the proposed formula are illustrated with a series of realistic examples.