• Title/Summary/Keyword: modes of interaction

Search Result 334, Processing Time 0.031 seconds

Fermi Resonance and Solvent Dependence of the νC=O Frequency shifts of Raman Spectra: Cyclohecanone and 2-Cyclohexen-1-one

  • Nam, Sang Il;Min, Eun Seon;Jeong, Yeong Mi;Lee, Mu Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.989-993
    • /
    • 2001
  • The carbonyl stretching vibration, νC=O of 2-cyclohexene-1-one, is in Fermi resonance with a combination tone. The amount of Fermi resonance interaction between these two modes is dependent upon the amount of solute/solvent interaction due to hyd rogen bonding between the carbonyl oxygen and the solvent proton. The corrected νC=O frequency of 2-cyclohexene-1-one occurs at a lower frequency than the observed νC=O mode of cyclohexanone, possibly caused by expanded conjugation effects. The carbonyl stretching modes of cyclic ketones were also affected by interaction with the ROH/CCl4 mixed solvent system.

Evaluation on Interaction Surface of Plastic Resistance for Exposed-type Steel Column Bases under Biaxial Bending

  • Choi Jae-hyouk;Ohi Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.826-835
    • /
    • 2005
  • Exposed-type steel column bases are used widely in low-rise building construction. Numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. This paper presents an experimental investigation of inelastic behaviors of square hollow section (SHS) steel column bases under biaxial bending. Two types of failure modes are considered : anchor bolt yielding and base plate yielding. Different pinching effects and interaction surfaces for biaxial bending are observed for these two modes during bi-directional quasi-static cyclic loading tests. Differences are elucidated using limit analyses based on a simple analytical model.

Characteristics of Synchronous and Asynchronous modes of fluctuations in Francis turbine draft tube during load variation

  • Goyal, Rahul;Cervantes, Michel J.;Gandhi, Bhupendra K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-175
    • /
    • 2017
  • Francis turbines are often operated over a wide load range due to high flexibility in electricity demand and penetration of other renewable energies. This has raised significant concerns about the existing designing criteria. Hydraulic turbines are not designed to withstand large dynamic pressure loadings on the stationary and rotating parts during such conditions. Previous investigations on transient operating conditions of turbine were mainly focused on the pressure fluctuations due to the rotor-stator interaction. This study characterizes the synchronous and asynchronous pressure and velocity fluctuations due to rotor-stator interaction and rotating vortex rope during load variation, i.e. best efficiency point to part load and vice versa. The measurements were performed on the Francis-99 test case. The repeatability of the measurements was estimated by providing similar movement to guide vanes twenty times for both load rejection and load acceptance operations. Synchronized two dimensional particle image velocimetry and pressure measurements were performed to investigate the dominant frequencies of fluctuations, vortex rope formation, and modes (rotating and plunging) of the rotating vortex rope. The time of appearance and disappearance of rotating and plunging modes of vortex rope was investigated simultaneously in the pressure and velocity data. The asynchronous mode was observed to dominate over the synchronous mode in both velocity and pressure measurements.

Partial interaction analysis of multi-component members within the GBT

  • Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.625-638
    • /
    • 2017
  • This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

An acoustical analysis of synchronous English speech using automatic intonation contour extraction (영어 동시발화의 자동 억양궤적 추출을 통한 음향 분석)

  • Yi, So Pae
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • This research mainly focuses on intonational characteristics of synchronous English speech. Intonation contours were extracted from 1,848 utterances produced in two different speaking modes (solo vs. synchronous) by 28 (12 women and 16 men) native speakers of English. Synchronous speech is found to be slower than solo speech. Women are found to speak slower than men. The effect size of speech rate caused by different speaking modes is greater than gender differences. However, there is no interaction between the two factors (speaking modes vs. gender differences) in terms of speech rate. Analysis of pitch point features has it that synchronous speech has smaller Pt (pitch point movement time), Pr (pitch point pitch range), Ps (pitch point slope) and Pd (pitch point distance) than solo speech. There is no interaction between the two factors (speaking modes vs. gender differences) in terms of pitch point features. Analysis of sentence level features reveals that synchronous speech has smaller Sr (sentence level pitch range), Ss (sentence slope), MaxNr (normalized maximum pitch) and MinNr (normalized minimum pitch) but greater Min (minimum pitch) and Sd (sentence duration) than solo speech. It is also shown that the higher the Mid (median pitch), the MaxNr and the MinNr in solo speaking mode, the more they are reduced in synchronous speaking mode. Max, Min and Mid show greater speaker discriminability than other features.

How to Design Membrane Chromatography for Bioseparations: A Short Review (바이오분야 분리용 막크로마토그래피 설계 방안)

  • Park, Inho;Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 2021
  • While there are increasing demands on biomolecules separation, resin chromatography lacks in terms of throughput and membrane chromatography is an alternative with high binding capacity and enhanced mass transfer properties. Unlike typical membrane processing, where the performance can only be empirically assessed, understanding how mechanisms work in membrane chromatography is decisive to design biospecific processing. This short review covers three separation mechanisms, including affinity interaction modes for selectively capturing bulk molecules using biospecific sites, ion exchange modes for binding biomolecules using net charges and hydrophobic interaction modes for binding targeted, hydrophobic species. The parameters in designing membrane chromatography that should be considered operation-wise or material-wise, are also further detailed in this paper.

Analysis of Team Interaction Changes in Capstone-Design Activities by MBTI Modes (Capstone-Design 활동에서 MBTI 성격유형에 따른 팀 상호작용 변화 분석)

  • Lee, Tae-Ho;Kim, Taehoon
    • Journal of Engineering Education Research
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • This study has a purpose mainly to analyze the team interaction change by the duration of time in the Capstone-Design activities according to MBTI Modes. Study objects are four students of Mechanical Engineering at School of Engineering in C University located in Daejeon, and the team interaction change was analyzed through IPA (Interaction Process Analysis) method. From the result, first, ESTP showed the change of increase in interaction by the time duration of initial, mid, late periods in 'social-emotional area: positive' and 'task area: question', and the change of decrease by the same time duration of periods in 'task area: solution'. Also, there was no change in 'social-emotional area: negative' because there was no interaction. Second, ESFJ showed the change of decrease in interaction by the time duration of initial, mid, late periods in 'social-emotional area: positive' and 'task area: question', and the change of increase by the same time duration of periods in 'task area: solution' and 'social-emotional area: negative'. Third, ISTJ showed the change of decrease in interaction by the time duration of initial, mid, late periods in 'social-emotional area: positive', 'task area: question' and 'social-emotional area: negative', and the change of increase by the same time duration of periods in 'task area: solution'. Fourth, ENFP showed the change of decrease by the time duration of initial, mid, late periods in 'social-emotional area: positive', 'task area: solution' and 'social-emotional area: negative', and the change of increase by the same time duration of periods in 'task area: question'.

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed;G. Khushbu;M. Anbarasu;Ather Khan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.117-125
    • /
    • 2024
  • This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

Exploration to Model CSCL Scripts based on the Mode of Group Interaction

  • SONG, Mi-Young;YOU, Yeong-Mahn
    • Educational Technology International
    • /
    • v.9 no.2
    • /
    • pp.79-95
    • /
    • 2008
  • This paper aims to investigate modeling scripts based on the mode of group interaction in a computer-supported collaborative learning environment. Based on a literature review, this paper assumes that group interaction and its mode would have strong influence on the online collaborative learning process, and furthermore lead learners to create and share significant knowledge within a group. This paper deals with two different modes of group interaction- distributed and shared interaction. Distributed interaction depends on the external representation of individual knowledge, while shared interaction is concerned with sharing knowledge in group action. In order to facilitate these group interactions, this paper emphasizes the utilization of appropriate CSCL scripts, and then proposes the conceptual framework of CSCL scripts which integrate the existing scripts such as implicit, explicit, internal and external scripts. By means of the model regarding CSCL scripts based on the mode of group interaction, the implications for research on the design of CSCL scripts are explored.

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.