DOI QR코드

DOI QR Code

Fermi Resonance and Solvent Dependence of the νC=O Frequency shifts of Raman Spectra: Cyclohecanone and 2-Cyclohexen-1-one


Abstract

The carbonyl stretching vibration, νC=O of 2-cyclohexene-1-one, is in Fermi resonance with a combination tone. The amount of Fermi resonance interaction between these two modes is dependent upon the amount of solute/solvent interaction due to hyd rogen bonding between the carbonyl oxygen and the solvent proton. The corrected νC=O frequency of 2-cyclohexene-1-one occurs at a lower frequency than the observed νC=O mode of cyclohexanone, possibly caused by expanded conjugation effects. The carbonyl stretching modes of cyclic ketones were also affected by interaction with the ROH/CCl4 mixed solvent system.

Keywords

References

  1. Spectrochim. ACTA v.27A, Cataliotti, R.; Jones, R. N.
  2. Spectrochim. Acta v.15 Angell, C. L.; Krueger, P. J.; Lauzon, R.; Leitck, L. C.;Noach, K.; Smith, R. D.; Jones, R. N.
  3. Appl. Spectrosc. v.45 Nyquist, R. A.; Fouchea, H. A.; Hoffman, G. A.; Hasha,D. L.
  4. Can. J.Chem. v.37 Jones, R. N.; Angell, C. L.; Ito, T.; Smith, D. J. D.
  5. Spectrochim.Acta v.44A Wohar, M. M.; Seehra, J. K.; Jagodzinski, P. W.
  6. Spectrochim. Acta v.18 Whetsel, K. B.; Kagarise, R. E.
  7. Appl. Spectrosc.;Appl. Spectrosc.;Appl. Spectrosc. v.43;40;43 Nyquist, R. A.;Nyquist, R. A.;Nyquist,R. A.
  8. J. Korean Chem. Soc. v.40 Lee, M. S.; Kang, J. S.; Nam, S. I.; Jung, Y. M.
  9. J. Korean Chem. Soc. v.37 Lee, M. S.; Lee, I. J.; Seo, S. H.
  10. Bullletin of the Korean Chemical Society. v.17 Lee, M. S.; Kang, J. S.; Nam, S. I.; Jung, Y. M.
  11. Mat-fys Medd. v.15 Lagseth, A.; Lord, R. C.; Kgl. Dnaske Videnskab,
  12. Spectrochim. Acta v.17 Nyquist, R. A.; Potts, W. J.
  13. The Donor-Acceptor Approach to Molecular Interactions Gutmann, V.
  14. J. Chem. Phys. v.76 Schweizer, K. S.; Chandler, D.
  15. J. Chem. Soc., Faraday Trans. v.90 Luck, W. A. P.; Zheng, H. Y.

Cited by

  1. The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy vol.25, pp.8, 2001, https://doi.org/10.5012/bkcs.2004.25.8.1211
  2. NBO analysis and vibrational spectra of 2,6-bis(p-methyl benzylidene cyclohexanone) using density functional theory vol.74, pp.2, 2001, https://doi.org/10.1016/j.saa.2009.06.007
  3. Vibrational spectra of 2-cyclohexen-1-one and its 2,6,6-d3 isotopomer vol.976, pp.1, 2001, https://doi.org/10.1016/j.molstruc.2009.10.010
  4. Molecular structure and vibrational spectra of 2,6-bis(benzylidene)cyclohexanone: A density functional theoretical study vol.78, pp.1, 2011, https://doi.org/10.1016/j.saa.2010.09.007
  5. 2-Chloro- and 2-bromo-3-pyridinecarboxaldehydes: Structures, rotamers, fermi resonance and vibration modes vol.79, pp.5, 2001, https://doi.org/10.1016/j.saa.2011.04.088
  6. DFT and experimental study on the IR spectra and structure of acesulfame sweetener vol.1009, pp.None, 2001, https://doi.org/10.1016/j.molstruc.2011.07.039
  7. Structural dynamics of 4‐pyrimidone in lower‐lying excited States vol.44, pp.6, 2013, https://doi.org/10.1002/jrs.4295
  8. Influence of solvent on crystal nucleation of risperidone vol.179, pp.None, 2001, https://doi.org/10.1039/c4fd00223g
  9. Probing Electric Field Effect on Covalent Interactions at a Molecule–Semiconductor Interface vol.138, pp.5, 2001, https://doi.org/10.1021/jacs.5b10253
  10. Pressure‐induced Fermi resonance between fundamental modes in 7,7,8,8‐tetracyanoquinodimethane vol.48, pp.8, 2001, https://doi.org/10.1002/jrs.5191