• Title/Summary/Keyword: modern physics

Search Result 128, Processing Time 0.03 seconds

The development of training platform for CiADS using cave automatic virtual environment

  • Jin-Yang Li ;Jun-Liang Du ;Long Gu ;You-Peng Zhang;Xin Sheng ;Cong Lin ;Yongquan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2656-2661
    • /
    • 2023
  • The project of China initiative Accelerator Driven Subcritical (CiADS) system has been started to construct in southeast China's Guangdong province since 2019, which is expected to be checked and accepted in the year 2025. In order to make the students in University of Chinese Academy of Sciences (UCAS) better understand the main characteristic and the operation condition in the subcritical nuclear facility, the training platform for CiADS has been developed based on the Cave Automatic Virtual Environment (CAVE) in the Institute of Modern Physics Chinese Academy of Sciences (IMPCAS). The CAVE platform is a kind of non-head mounted virtual reality display system, which can provide the immersive experience and the alternative training platform to substitute the dangerous operation experiments with strong radioactivity. In this paper, the CAVE platform for the training scenarios in CiADS system has been presented with real-time simulation feature, where the required devices to generate the auditory and visual senses with the interactive mode have been detailed. Moreover, the three dimensional modeling database has been created for the different operation conditions, which can bring more freedom for the teachers to generate the appropriate training courses for the students. All the user-friendly features will offer a deep realistic impression to the students for the purpose of getting the required knowledge and experience without the large costs in the traditional experimental nuclear reactor.

Improving the Professional Competence of a Specialist in Poland by Implementing Multimedia Technologies

  • Kravchenko, Tetiana;Varga, Lesia;Lypchanko-Kovachyk, Oksana;Chinchoy, Alexander;Yevtushenko, Nataliia;Syladii, Ivan;Kuchai, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.51-58
    • /
    • 2022
  • The article emphasizes the features of the modern education system in Poland, reveals the peculiarities of improving the professional competence of a specialist in Poland through the implementation of multimedia technologies. Various forms of innovations implemented in improving the professional competence of a specialist are listed: improvement (rationalization), modernization, innovation. The forms of professional improvement through the introduction of computer technologies in general and multimedia technologies, in particular, primarily include various professional courses, qualification, preparatory, methodological conferences, seminars, postgraduate studies, foreign and state internships. At the same time, the main direction is self-education. The subject of professional improvement in the application of computer technologies by specialists is the updating of existing knowledge, exchange of professional experience, planning, as well as discussion of innovative works in which specialists participate. Professional growth of specialists can occur both during work and in higher education institutions during their studies. Modernization of computer technologies, especially multimedia ones, is a necessary condition for the functioning of specialists in modern society, since specialists are at the center of the educational process, during the improvement of professional competence. The main functions of the educational process necessary for improving the professional competence of specialists through the implementation of multimedia technologies are revealed. These functions not only contribute to the professional improvement of specialists, but also affect their solutions and optimize the maintenance of contacts between specialists. The importance of creating conditions that are consistent with the modern needs of innovative education is emphasized.

GRAVITATIONAL WAVES AND ASTRONOMY (중력파와 천문학)

  • Lee, Hyung-Mok;Lee, Chang-Hwan;Kang, Gung-Won;Oh, John-J.;Kim, Chung-Lee;Oh, Sang-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.71-87
    • /
    • 2011
  • Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

HIGH REDSHIFT GALAXY CLUSTERS IN ELIAS-N1/N2 FIELDS WITH A NEW COLOR SELECTION TECHNIQUE

  • HYUN, MINHEE;IM, MYUNGSHIN;KIM, JAE-WOO;LEE, SEONG-KOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.409-411
    • /
    • 2015
  • Galaxy clusters, the largest gravitationally bound systems, are an important subject of study to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to their environments. To date, massive clusters have been found unexpectedly (Kang & Im 2009; Gonzales et al. 2012) and the evolution of galaxies in clusters is still controversial (Elbaz et al. 2007; Faloon et al. 2013). Finding galaxy cluster candidates at z > 1 in a wide, deep imaging survey data will enable us to solve such issues of modern extragalactic astronomy. We report new candidate galaxy clusters in one of the wide and deep survey fields, the European Large Area ISO Survey North1 (ELAIS-N1) and North2 (ELAIS-N2) fields, covering a sky area of $8.75deg^2$ and $4.85deg^2$ each. We also suggest a new useful color selection technique to separate z > 1 galaxies from low - z galaxies by combining multi-wavelength data.

THE KOREAN 1592-1593 RECORD OF A GUEST STAR: AN 'IMPOSTOR' OF THE CASSIOPEIA A SUPERNOVA?

  • Park, Changbom;Yoon, Sung-Chul;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.233-238
    • /
    • 2016
  • The missing historical record of the Cassiopeia A (Cas A) supernova (SN) event implies a large extinction to the SN, possibly greater than the interstellar extinction to the current SN remnant. Here we investigate the possibility that the guest star that appeared near Cas A in 1592-1593 in Korean history books could have been an 'impostor' of the Cas A SN, i.e., a luminous transient that appeared to be a SN but did not destroy the progenitor star, with strong mass loss to have provided extra circumstellar extinction. We first review the Korean records and show that a spatial coincidence between the guest star and Cas A cannot be ruled out, as opposed to previous studies. Based on modern astrophysical findings on core-collapse SN, we argue that Cas A could have had an impostor and derive its anticipated properties. It turned out that the Cas A SN impostor must have been bright ($M_V=-14.7{\pm}2.2mag$) and an amount of dust with visual extinction of ${\geq}2.8{\pm}2.2mag$ should have formed in the ejected envelope and/or in a strong wind afterwards. The mass loss needs to have been spherically asymmetric in order to see the light echo from the SN event but not the one from the impostor event.

Dynamism of Lived Space in the Light of Intuitive Experiential Contents (직관적 체험내용으로 비추어 본 생활공간의 역동성)

  • Kim, Young-Chul
    • Journal of the Korean housing association
    • /
    • v.16 no.5
    • /
    • pp.75-81
    • /
    • 2005
  • The purpose of this study is to shed light on the field dynamics of 'lived space' in the light of our intuitive experiential contents by way of investigating three properties of space. While finding inspirations in the field theory of modern physics, investigation of our intuitive responses to the physical and spatial environment leads us to a coherent view of matter and space. We find then that our lived world is more than a system of inert matter; it is a dynamic environment of life in which feeling and mood, spiritual meaning and value, are perpetually infused with matter. Any concept of space, if it is to be meaningful to lift has to somehow acknowledge this fact. Empty space and matter cannot be conceived as mutually exclusive and independent as in classical physics. Rather they should be seen as two different manifestations of an underlying dynamism which permeates the world. The 'properties' of space can only be understood in terms of the 'impact' of material presence. The object cannot be seen as an isolated entity, but the 'conditioning' of its surrounding space has to be understood as an integral part of its being. Lived space can thus be viewed as an emotionally charged field, or a field of emotional energy, whose properties may be described in terms of concentration, mobility and resonance.

Comenius' Pansophism as a Historical Origin of Science Education (코메니우스의 범지주의적 교육학과 과학교육의 사상적 기원에 관한 문제)

  • Chung, Byung-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.3
    • /
    • pp.379-392
    • /
    • 1994
  • One of the historical origins of the modern science education was investigated in this paper. From the view point of the pansophistic educational philosophy which emphasized "man should teach completely all things to all mankind(Omnes, Omnia, omnino)", J.A.Comenius proposed in his book "Didactica magna"(1658) that 'physica' should be learned as one of the most important school subjects. He suggested the completion of human being as a wholeness of the universe could be achieved through the physics teaching. His ideas of science education was, however, directed not to the 'rational konwledge' about the natural world, but to the 'divine wisdom'. His main thoughts and influences on science education can be summarized as follows: 1) The human being as a God's image should know the divinely created nature, because the invisible God's existence can be sensorially recognized in the nature. 2) Physics or science should be regarded as more important objects than verbal learning in general school education. 3) The cognitive union between the words('representative' or 'das Dargestellte') and things('presentative' or 'das Dargebotene') can be achieved through the objects lesson ('Anschauungsunterricht') 4) The realistic and sensor-cognitive learning theory of the object lesson is yet very important especially in the science education of elementary school, even though the inquiry learning process has became more important in the last years. 5) The religious aspect of his idea could not satisfy the social needs of industrialization and the development of professonal technics in the 18 to 19th century.

  • PDF

Material Design Using Multi-physics Simulation: Theory and Methodology (다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션)

  • Hyun, Sangil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

The Chinese Black Box - A Scientific Model of Traditional Chinese Medicine

  • Theodorou, Matthias;Fleckenstein, Johannes
    • Journal of Acupuncture Research
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Models of traditional Chinese medicine (TCM) are still difficult to grasp from the view of a Western-cultural background. For proper integration into science and clinical research, it is vital to think "out of the box" of classical sciences. Modern sciences, such as quantum physics, system theory, and information theory offer new models, that reveal TCM as a method to process information. For this purpose, we apply concepts of information theory to propose a "Chinese black box model," that allows for a non-deterministic, bottom-up approach. Considering a patient as an undeterminable complex system, the process of getting information about an individual in Chinese diagnostics is compared to the input-process-output principle of information theory and quantum physics, which is further illustrated by Wheeler's "surprise 20 questions." In TCM, an observer uses a decision-making algorithm to qualify diagnostic information by the binary polarities of "yang" (latin activity) and "yin" (latin structivity) according to the so called "8 principles" (latin 8 guiding criteria). A systematic reconstruction of ancient Chinese terms and concepts illuminates a scattered scientific method, which is specified in a medical context by Latin terminology of the sinologist Porkert [definitions of the Latin terms are presented in Porkert's appendix [1] (cf. Limitations)].

Structure of an Oncology Information System Based on a Cost-Effective Relational Database for Small Departments of Radiation Oncology

  • Jeon, Hosang;Kim, Dong Woon;Joo, Ji Hyeon;Ki, Yongkan;Kim, Wontaek;Park, Dahl;Nam, Jiho;Kim, Dong Hyeon
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.172-178
    • /
    • 2020
  • Purpose: Radiation oncology information systems (ROIS) have evolved toward connecting and integrating information between radiation treatment procedures. ROIS can play an important role in utilizing modern radiotherapy techniques that have high complexity and require a large amount of information. Methods: Using AccessTM software, we have developed a relational database that is highly optimized for a radiotherapeutic workflow. Results: The prescription table was chosen as the core table to which the other tables were connected, and three types of forms-charts, worklists, and calendars- were suggested. A fast and reliable channel for delivering orders and remarks according to changes in the situation was also designed. Conclusions: We expect our ROIS design to inspire those who need to develop and manage an individual ROIS suitable for their radiation oncology departments at a low cost.