• Title/Summary/Keyword: moderate seismic zone

Search Result 19, Processing Time 0.023 seconds

Seismic Response of Multiple Span Prestressed Concrete Girder Bridges in the New Madrid Seismic Zone (New Madrid 지진대의 다경간 PSC 교량의 지진거동)

  • Choi, Eun-Soo;Kim, Hak-Soo;Kim, Kwang-Il;Cho, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.11-23
    • /
    • 2006
  • This paper evaluates the seismic response of multi-span prestressed concrete girder bridges typically found in the New Madrid Seismic Zone region of the central United States. Using detailed nonlinear analytical models and synthetic ground motion records for Memphis, TN, nonlinear response history analyses are performed for two levels of ground motion: 10% probability of exceedance (PE) in 50 years, and 2% probability of exceedance (PE) in 50 years. The results show that the bridge performance is very good fur the 10% PE in 50 years ground motion level. However, the performance for the 2% PE in 50 years ground motion is not so good because it results in highly inelastic behavior of the bridge. Impact between decks results in large ductility demands on the columns, and failure of the bearings that support the girders. It is found that making the superstructure continuous, which is commonly performed for reducing dead load moments and maintenance requirements, results in significant improvement in the seismic response of prestressed concrete girder bridges.

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

Seismic Response Analysis and Performance Evaluation of Wind-Designed Concentrically Braced Steel Highrise Buildings under Moderate Seismicity (중진대의 지진환경하에서 내풍설계된 초고층 철골조 중심가새골조의 지진응답해석 및 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.33-42
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall builidng, the probable structural impact of the 500-year design basis earthquake (DBE) or the 2400-year maximum credible earthquake (MCE) on the selected structural system should be considered at least in finalizing the design. In this study, seismic performance evaluation was conducted for concentrically braced steel highrise buildings that were only designed for wind by following the assumed domestic design practice. It was found that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seimsic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The strength demand-to-strength capacity study based on the response spectrum analysis revealed that, due to the system overstrength factors mentioned above, wind-designed concentrically braced steel highrise buildings having a slenderness ratio of larger than six can withstand elastically even the maximum credible earthquake at the performance level of immediate occupancy.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

Preliminary Study on Boundary Detailing of Structural Wall with Spirals (Spiral 철근 배근된 전단벽 단부의 내진성능 연구를 위한 예비 고찰)

  • 김록배;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.589-594
    • /
    • 2000
  • The necessary strength and ductility to avoid structural damage under moderate earthquake can be achieved by properly detailed transverse reinforcement in the plastic hinge zone. However, most structural walls have a higher aspect ratio(M/Vl\ulcorner) without well confined boundary regions. Therefore there is a need for adequate detailing in the plastic hinge zone, particularly boundary regions. In this paper, the fabricated interlocking spirals is introduced as a new seismic detailing for ductile behavior of the structural walls to be able to substitute for existing complicated detailing with ties. This paper also investigates the behavior characteristics of structural walls with interlocking spirals including confinement of the concrete and strength associated with flexure and shear.

  • PDF

Pseudo Dynamic Test for the Seismic Performance Enhancement of Circular RC Bridge Piers Retrofitted with Fibers (섬유보강 원형 철근콘크리트 교각의 내진성능 향상에 관한 유사동적 실험)

  • 정영수;박종협;박희상;조창백
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.180-189
    • /
    • 2002
  • The objective of this experimental research is to assess the seismic performance of circular RC bridge pier specimens retrofitted with fibers which were designed as a prototype of Hagal bridge in the city of Suwon, Korea. Pseudo dynamic test has been done for four(4) test specimens which were nonseismically or seismically designed by the related provisions of the Korea roadway bridge design specification, and four nonseisemic test specimens retrofitted with fibers in the plastic hinge region. Glass and carbon fiber sheets were used for the seismic capacity enhancement of circular test specimens. Important test parameters were confinement steel ratio, load pattern, and retrofitting. The seismic behavior has been analyzed through the displacement ductility, energy analysis, and capacity spectrum. Approximate 7.7 ∼8.7 displacement ductility was observed for nonseismic test specimens retrofitted with fibers subjected to Korea Highway Cooperation artificial earthquake motions. It is concluded that these retrofitted test specimens could have sufficient seismic capacity in the region of moderate seismic zone.

Estimation of gas-hydrate concentrations from amplitude variation with offset (AVO) analysis of gas-hydrate BSRs in the Ulleung Basin, East Sea (동해 울릉분지 해저 모방 반사면의 AVO 분석을 통한 가스하이드레이트 농도 예측)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Ryu, Byong-Jae;Yoo, Dong-Geun;Chung, Bu-Heung;Kang, Nyeon-Keon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.676-679
    • /
    • 2009
  • The bottom-simulating reflector (BSR) is the most commonly observed seismic indicator of gas hydrate in the Ulleung Basin, East Sea. We processed ten representative seismic reflection profiles, selected from a large data set, for amplitude variation with offset (AVO) analysis of the BSR to estimate gas-hydrate concentrations. First, BSRs were divided into five groups based on their seismic amplitudes and associated sediment types: (1) very high-amplitude BSRs in turbidite/hemipelagic sediments, (2) high-amplitude BSRs in debris-flow deposits, (3) moderate-amplitude BSRs in turbidite/hemipelagic sediments, (4) very low-amplitude BSRs in debris-flow deposits, and (5) very low-amplitude BSRs in seismic chimneys. The AVO responses of the group 1 and 3 BSRs are characterized by a rapid decrease and a relatively slow decrease in magnitude with offset, respectively. The AVO response of the group 2 BSR is characterized by a relatively slow increase in magnitude with offset. The AVO responses of the groups 4 and 5 BSRs are characterized by a flat AVO with very small zero-offset amplitude. Theoretical AVO curves, based on the three-phase Biot theory, suggest that the group 1 and 3 BSRs may be related to high (> 40%) concentrations of gas hydrate whereas the group 2 BSRs may indicate low (< 20%) concentrations of gas hydrate. The AVO responses of the group 4 and 5 BSRs cannot be compared with the theoretical models because of their very small zero-offset amplitudes. The comparison of the AVO response of the BSR at the UBGH-04 well with theoretical models suggests about 10% gas-hydrate concentration above the gas-hydrate stability zone.

  • PDF

Investigation on Response Modification Factor of RC Structural Walls in Apartment Buildings (아파트 건물의 구조 벽체에 대한 반응수정계수)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.544-552
    • /
    • 2001
  • Korea is classified into low and moderate seismic zone from the view-point of seismic hazard level. Korean seismic provisions has been developed based on UBC and ATC 3-06. Thus, in calculation of design base shear according to Korean provisions response modification factor (R) is included in the formula of design base shear. The major role of this factor is to reduce the elastic design base shear whereby structures can behave in inelastic range during design level earthquake ground motions(mean return period of 475 yrs.). R factor is assigned according to material and structural systems. In this study, R factor for bearing wall system is considered. Most of the walls of apartment buildings in Korea resist gravity and seismic loads simultaneously so that this wall system can be classified into bearing wall system. Structural details of these walls are different from those used in Japan and U.S.. They are all rectangular in sectional shape rather than barbell in shape, and also have special lateral reinforcement details at the boundaries of a wall. In Korean seismic design provisions(1988), two different values(3.0 and 3.5) of R factor are assigned to the bearing wall systems according to the wall details. However, in updated seismic provisions(2000), only one value is assigned to R factor(3.0) irrespective of wall details. In this study, the design base shear values in Korean seismic design provisions(1988, 2000), ATC 3-06, UBC are compared. Also experimental study was carried out to evaluate the seismic performance of structural walls. For this purpose, five test specimens were made which have special details used in apartment bearing wall systems in Korea. Based on the results of this study, response modification factor for bearing wall system is discussed.

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.