• Title/Summary/Keyword: modeling of the experiment

Search Result 1,301, Processing Time 0.028 seconds

A Study on the Thermal Flow Analysis for Heat Performance Improvement of a Wireless Power Charger (열 유동해석을 통한 무선충전기 발열 성능 향상에 관한 연구)

  • Kim, Pyeong-Jun;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.310-316
    • /
    • 2019
  • In automotive application, customers are demanding high efficiency and various functions for convenience. The demand for these automotive applications is steadily increasing. In this study, it has been studied the analysis of heat flow to improve the PCB(printed circuit board) heating performance of WPC (wireless power charger) recently developed for convenience. The charging performance of the wireless charger has been reduced due to power dissipation and thermal resistance of PCB. Therefore, it has been proposed optimal PCB design, layout and position of electronic parts through the simulation of heat flow analysis and PCB design was analyzed and decided at each design stage. Then, the experimental test is performed to verify the consistency of the analysis results under actual environmental conditions. In this paper, The PCB modeling and heat flow simulation in transient response were performed using HyperLynx Thermal and FloTHERM. In addition, the measurement was performed using infrared thermal imaging camera and used to verify the analysis results. In the final comparison, the error between analysis and experiment was found to be less than 10 % and the heating performance of PCB was also improved.

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar (고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의)

  • Han, Dong-Gyun;Seo, Him Chan;Choi, Jee Woong;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.

Localization Using Extended Kalman Filter based on Chirp Spread Spectrum Ranging (확장 Kalman 필터를 적용한 첩 신호 대역확산 거리 측정 기반의 위치추정시스템)

  • Bae, Byoung-Chul;Nam, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Location-based services with GPS positioning technology as a key technology, but recognizing the current location through satellite communication is not possible in an indoor location-aware technology, low-power short-range communication is primarily made of the study. Especially, as Chirp Spread Spectrum(CSS) based location-aware approach for low-power physical layer IEEE802.15.4a is selected as a standard, Ranging distance estimation techniques and data transfer speed enhancements have been more developed. It is known that the distance measured by CSS ranging has quite a lot of noise as well as its bias. However, the noise problem can be adjusted by modeling the non-zero mean noise value by a scaling factor which corresponds to the change of magnitude of a measured distance vector. In this paper, we propose a localization system using the CSS signal to measure distance for a mobile node taken a measurement of the exact coordinates. By applying the extended kalman filter and least mean squares method, the localization system is faster, more stable. Finally, we evaluate the reliability and accuracy of the proposed algorithm's performance by the experiment for the realization of localization system.

Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon;Zi, Goangseuo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.97-107
    • /
    • 2014
  • Finite element modelling and analysis were conducted for the roll-type steel mats which were placed on loose sand and subjected to a standard truck wheel load in this study. The roll-type steel mats mean that the steel mats can be folded as a circle shape for the carrying to fields in cold regions where workability is limited and are developed for a rapid rehabilitation method for roadway across soft ground which is caused by thawing during the summer season in cold regions. The model is composed of link elements to simulate nonlinear behavior of connections between steel mats, thick shell elements to have flexural stiffness of the steel mats, and springs to simulate characteristics of foundation soils. The structural behaviors of the shell, link elements, and springs were verified at each modelling step through experiment and analysis. Beam and shell analysis without the link elements were conducted and compared to results obtained from the model presented in this study. Significant vertical displacement is shown in the shell model with hinge connections. Therefore, the results demonstrate that the analysis model for the roll-type steel mats on loose sand needs further detail parametric studies.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea (우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가)

  • Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Kim, Gunah;Kang, Jonggu;Kim, Kwangjin;Cho, Jaeil;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.337-357
    • /
    • 2021
  • Because the growth of paddy rice is affected by meteorological factors, the selection of appropriate meteorological variables is essential to build a rice yield prediction model. This paper examines the suitability of multiple meteorological datasets for the rice yield modeling in South Korea, 1996-2019, and a hindcast experiment for rice yield using a machine learning method by considering the nonlinear relationships between meteorological variables and the rice yield. In addition to the ASOS in-situ observations, we used CRU-JRA ver. 2.1 and ERA5 reanalysis. From the multiple meteorological datasets, we extracted the four common variables (air temperature, relative humidity, solar radiation, and precipitation) and analyzed the characteristics of each data and the associations with rice yields. CRU-JRA ver. 2.1 showed an overall agreement with the other datasets. While relative humidity had a rare relationship with rice yields, solar radiation showed a somewhat high correlation with rice yields. Using the air temperature, solar radiation, and precipitation of July, August, and September, we built a random forest model for the hindcast experiments of rice yields. The model with CRU-JRA ver. 2.1 showed the best performance with a correlation coefficient of 0.772. The solar radiation in the prediction model had the most significant importance among the variables, which is in accordance with the generic agricultural knowledge. This paper has an implication for selecting from multiple meteorological datasets for rice yield modeling.

Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis (하이브리드 유한요소해석을 위한 인공지능 조인트 모델 개발)

  • Jang, Kyung Suk;Lim, Hyoung Jun;Hwang, Ji Hye;Shin, Jaeyoon;Yun, Gun Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.773-782
    • /
    • 2020
  • The development of joint FE models for deep learning neural network (DLNN)-based hybrid FEA is presented. Material models of bolts and bearings in the front axle of tractor, showing complex behavior induced by various tightening conditions, were replaced with DLNN models. Bolts are modeled as one-dimensional Timoshenko beam elements with six degrees of freedom, and bearings as three-dimensional solid elements. Stress-strain data were extracted from all elements after finite element analysis subjected to various load conditions, and DLNN for bolts and bearing were trained with Tensorflow. The DLNN-based joint models were implemented in the ABAQUS user subroutines where stresses from the next increment are updated and the algorithmic tangent stiffness matrix is calculated. Generalization of the trained DLNN in the FE model was verified by subjecting it to a new loading condition. Finally, the DLNN-based FEA for the front axle of the tractor was conducted and the feasibility was verified by comparing with results of a static structural experiment of the actual tractor.

Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts (촉매를 이용한 이산화탄소 고정화 및 고리형 카보네이트 합성반응에 대한 계산화학적 해석)

  • An, Hye Young;Kim, Min-Kyung;Jeong, Hui Cheol;Eom, Ki Heon;Won, Yong Sun
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • In this study, a computational chemistry methodology called as molecular modeling was been applied to explain several experiment results mechanistically. The reaction chosen for this study was to remove carbon dioxide, known as a primary greenhouse gas, by an epoxide via the carbon dioxide fixation to produce carbonates. This reaction inherently needs the use of catalysts because it has a significantly high activation barrier (55~59 kcal/mol). Among various types of catalysts, we studied in zeolitic imidazolate framework 90 (ZIF-90)/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, and dimethylethanolamine (DMEA). First, probable reaction pathways were proposed based on calculated energetics by computational chemistry. The energetics was then used for the thermodynamic interpretation on the activity of catalysts. In the case of ZIF-90/IL-ZIF-90 and KI/KI-glycine, IL-ZIF-90 and KI-glycine showed better yields compared to their counterparts. The calculation proposed interesting results that it is not from the lowering of activation energy but from the unstable intermediates of ZIF-90 and KI-glycine. For DMEA, the calculated activation energy was ~42 kcal/mol, much lower than that of the non-catalytic reaction. A possible reaction pathway was located to confirm the interaction between −NH group from ammonium and oxygen from epoxide for polystyrene-supported quaternized ammonium salt.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

Reanalysis of Realistic Mathematics Education Perspective in Relation to Cultivation of Mathematical Creativity (현실적 수학교육 이론의 재음미 : 수학적 창의성 교육의 관점에서)

  • Lee, Kyeong-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.1
    • /
    • pp.47-62
    • /
    • 2016
  • Cultivating mathematical creativity is one of the aims in the recently revised mathematics curricular. However, there have been lack of researches on how to nurture mathematical creativity for ordinary students. Perspective of Realistic Mathematics Education(RME), which pursues education of creative person as the ultimate goal of mathematics education, could be useful for developing principles and methods for cultivating mathematical creativity. This study reanalyzes RME from the points of view in mathematical creativity education. Major findings are followed. First, students should have opportunities for mathematical creation through mathematization, while seeking and creating certainty. Second, it is vital to begin with realistic contexts to guarantee mathematical creation by students, in which students can imagine or think. Third, students can create mathematics in realistic contexts by modelling. Fourth, students create the meaning of 'model of(MO)', which models the given context, the meaning of 'model for(MF)', which models formal mathematics. Then, students create MOs and MFs that are equivalent to the intial MO and MF given by textbook or teacher. Flexibility, fluency, and novelty could be employed to evaluate the MOs and the MFs created by students. Fifth, cultivation of mathematical creativity can be supported from development of local instructional theories by thought experiment, its application, and reflection. In conclusion, to employ the education model of cultivating mathematical creativity by RME drawn in this study could be reasonable when design mathematics lessons as well as mathematics curriculum to include mathematical creativity as one of goals.