• Title/Summary/Keyword: model-order reduction

Search Result 1,089, Processing Time 0.025 seconds

An Experimental Investigation on Reduction of List Angle of a Semi-submersible Platform in Head Sea

  • Kim, Nam Woo;Nam, Bo Woo;Choi, Young Myung;Hong, Sa Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.168-175
    • /
    • 2015
  • This study consists of an experimental investigation of the reduction of the second-order roll motion of a semi-submersible platform in head sea conditions by adding hull damping. The second-order heave drift force and roll drift moment are known to be the main triggers that induce the list angle (Hong et al., 2010). Hong et al. (2013) used numerical calculations to show the possibility of reducing the list angle by changing the pontoon shape and adding a damping device on the hull. One of their findings was that the reduction in the list angle due to the increase in pontoon surface damping was significant. A series of model tests were carried out with a 1:50 scaled model of semi-submersible at the KRISO wave basin. The experiments indicated that adding damping on the hull surface effectively suppressed the list angle.

Quantitative Risk Reduction Model according to SIL allocated by Risk Graph for Railway Platform Door System (Risk Graph에 의해 할당된 SIL에 따른 철도 승강장 도어 시스템의 정량적 Risk 저감 모델)

  • Song, Ki Tae;Lee, Sung Ill
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.141-148
    • /
    • 2016
  • There exists required safety integrity level (SIL) to assure safety in accordance with international standards for every electrical / electronics / control equipment or systems with safety related functions. The SIL is allocated from lowest level (level 0) to highest level (level 4). In order to guarantee certain safety level that is internationally acceptable, application of methodology for SIL allocation and demonstration based on related international standards is required. Especially, in case of the SIL allocation method without determining of quantitative tolerable risk, the additional review is needed to check whether it is suitable or not is required. In this study, the quantitative risk reduction model based on the safety integrity allocation results of railway platform screen door system using Risk Graph method has been examined in order to review the suitability of quantitative risk reduction according to allocated safety integrity level.

The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip (Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Park, Jung-Kwon;Lee, Ho-Kil;Oh, Se-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Numerical Prediction for Reduction of Oxygen Deficient Water Mass by Ecological Model in Jinhae Bay (생태계모텔에 의한 진해만의 빈산소수괴 저감예측)

  • Lee, In-Cheol;Kong, Hwa-Hun;Yoon, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • As a basic study for establishing a countermeasure for an oxygen deficient water mass (ODW), we investigated the variation of ODW volume according to the enforced total pollution load management in Jinhae Bay. This study estimated the inflowing pollutant loads into Jinhae Bay and predicted the reduction in ODW by using a sediment-water ecological model (SWEM). The result obtained in this study are summarized as follows: 1) The daily average pollutant loads of COD, SS, TN, TP, DIN, and DIP inflowing into Jinhae bay in 2005 were estimated to be about 12,218 kg-COD/day, 91,884 kg-SS/day, 5,292 kg-TN/day, 182 kg-TP/day, 4,236 kg-DIN/day, and 130 kg-DIP/day. 2) The calculated results of the tidal current by the hydrodynamic model showed good agreement with the observed currents. Also, an ecological model well reproduced the spatial distribution of the water quality in the bay. 3) This study defined the ODWDI (ODW decreasing index) in order to estimate the ODW decreasing volume caused by a reduction in the inflowing pollutant loads. As a result, the ODWDI was predicted to be about 0.91 (COD 30% reduction), 0.87 (COD 50% reduction), 0.79 (COD 70% reduction), 0.85 (ALL 30% reduction), 0.66 (ALL 50% reduction), and 0.45 (ALL 70% reduction). The ODW volume was decreased 1.5 $\sim$ 2.6 times with a reduction in the COD, TN, and TP inflowing pollutant loads compared to a reduction in just the COD inflowing pollutant load. Therefore, it is necessary to enforce total pollution load management, not only for COD, but also fm TN and TP.

RBF-POD reduced-order modeling of DNA molecules under stretching and bending

  • Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.395-409
    • /
    • 2013
  • Molecular dynamics (MD) systems are highly nonlinear and nonlocal, and the conventional model order reduction methods are ineffective for MD systems. The RBF-POD method (Lee and Chen, 2013) employed a radial basis function (RBF) approximated potential energies and inter-atomic forces of MD systems under the framework of the proper orthogonal decomposition (POD) method for the reduced-order modeling of MD systems. In this work, we focus on the numerical procedures of the RBF-POD method and demonstrate how to apply this approach to the modeling of ds-DNA molecules under stretching and bending conditions.

The Reduction of Pass Band Error in the Order Reduction of the Discrete Time Linear Systems (이산시간 선형 시스템의 차수 감소에 있어서 대역통과 오차 감소)

  • 김정화;정찬수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 1992
  • This paper proposes a reduced order method which reduces passband error by changing controllability and observability gramian based on weighted functions in the linear time invariant system. In the case that the 4-order model is the reduced to 3-order model in the low-pass filter, the QEI in the proposed method is improved to 6.15724 compared to 10.16464 in the balanced realization method and the sensitivity is improved to 5.45962 compared to 7.790568. The frequency property curves show that the proposed method is superior to the balanced realization method.

  • PDF

Vibration Reduction of Optical Storage Disk Drive Using Piezoelectric Shunt (압전 션트회로를 이용한 광저장 디스크 드라이브의 진동 저감)

  • 박종성;임수철;최승복;김재환;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.381-386
    • /
    • 2002
  • This paper presents a piezoelectric shunt methodology to reduce unwanted vibration of optical disk drive(O.D.D.). After briefly investigating a second-order mechanical vibration absorber model, the O.D.D. structure is incorporated with the piezoelectric shunt circuit. In order to evaluate feasibility of multi-mode passive damping of the structure, admittance measurement of piezoceramic is undertaken. The parameters are optimally tuned by admittance measurement results on the basis of the circuit model and displacement transmissibility is evaluated. To verify validity of admittance measurement result, experiment is performed and vibration reduction is achieved at two different modes.

  • PDF

Vibration Reduction of Chip-Mount System (칩 마운트 시스템의 진동 경감)

  • 임경화;장헌탁
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.331-337
    • /
    • 2001
  • The purpose of this study is to analyze the principal causes of vibration problem and find out the method of vibration reduction in a chip-mount system. The principal causes are investigated through measurements of vibration spectrum and model parameters. Modal parameters are obtained by using an experimental model test. Based on the model parameters from experiments. a model of finite element method is formulated. The model presents effective redesign of increasing the natural frequencies in order to reduce the vibration of a chip-mount system. Further, through computer simulation for the behavior of head to be main vibration source, the best acceleration pattern of head movement can be verified to achieve effective head-positioning and reduce the vibration due to head movement.

  • PDF

A Fractional Model Reduction for T-S Fuzzy Systems with State Delay

  • Yoo Seog-Hwan;Choi Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.184-189
    • /
    • 2006
  • This paper deals with a fractional model reduction for T-S fuzzy systems with time varying delayed states. A contractive coprime factorization of time delayed T-S fuzzy systems is defined and obtained by solving linear matrix inequalities. Using generalized controllability and observability gramians of the contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is performed.

A Fractional Model Reduction for Linear Systems with State Delay (상태변수 시간지연을 갖는 선형시스템의 분수 모델 축소)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.29-36
    • /
    • 2004
  • This paper deals with a fractional model reduction for linear systems with time varying delayed states. A contractive coprime factorization of linear time delayed systems is defined and obtained by solving linear matrix inequalities. Using generalize controllability and observability gramians of tile contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is illustrated.